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Preface

The theory of quantum mechanics continues to appear arbitrary and abstruse to
new students; and to many veterans, it has become acceptable and useable only
because it is familiar. Yet, this theory is at the basis of all modern physics, chem-
istry, and engineering, describing, as it does, the behavior of the submicroscopic
particles making up all matter. So it needs to be presented more éffectively to a
diverse audience.

The primary question is, I believe, ‘What can be considered seif-evident?’ Indeed,
what do certain key experiments reveal about the workings of nature? How can
we consider that some probabilities are not a result of our ignorance, but irstead,
fundamental properties?

We must pay particular attention to the subject of what we can do, what we
cannot do, and what we can and cannot observe. We can prepare a homogeneous
beam of almost independent particles by boilirg electrcns out of a metal and
accelerating them by a given potential .drop. We cannot follow an electron in- .
dividually in the beam without introducing conditions that destroy the beam’s
homogeneity, but we can determine when electrons arrive at a given position.

Such arrivals are found to be governed by probability. In the homogeneous
beam, the resulting probability density p is constant. There is thus symmetry over .-
displacement along the beam, and similarly, over time. But to describe propagation
along the beam, we need an independent function. A simple choice is to consider _
p, the squire of the absolute value of a complex function ¥. The phase of the
function is involved in describing propagation.

To be consistent, we make each infinitesimal change d W meet the symmetry
requirements over space and time. We also suppose that, for pure motion in one
direction, each part of W exerts the same effect on dW as each cther part. Further-
more, the influences on d ¥ vary directly with W. We thus have a simple symmetry
over ¥, .

T¢ delermine whether the constructed form is suitable, we again turn to experi-
ment. {uvestigators find that homogensous beams are diffracted exactly as this ¥
would be. Furthermore, one of the paramecters i1. the theory safisfies de Broglie’s
equation, which photons in light are known to obey.

* From: photoelectric determinations, we induce a relationship for the other
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parameter. In Chapter 3 we consider how the arguments need to be modified to
allow for a varying potential. In Chapter 4 this discussion is expanded to cover
motion over more than one variable.

Translatory motion is considered first because it is the simplest. Rotatory
motion is in many respects similar, so it is considered next. Symmetry arguments
are invoked in constructing the variation of W over 6 from that over ¢. The simplest
kind of varying field is that for the harmonic oscillator; so its treatment appears
next. Then we go to the hydrogen-like atom, the model in terms of which other
atoms and nuclei are understood.

Operator theory is developed only after we have gained some confidence in
treating the simpler systems.

Because particles of the same species are indistinguishable, a corresponding
symmetry exists in multiparticle systems. This has profound effects on the prop-
erties of such systems in atoms, molecules, and thermodynamic arrays.

The material is all presented at a level suitable for junior and senior students in
physics and chemistry. Engineers who work with molecular, atomic, and electronic
processes would also benefit from the course.

There are nearly 20 problems at the end of each chapter. These have been
developed through actual use in undergraduate classes.



General Introduction

In our early years, we develop a commonsense view of the world based on in-
ductions from the experiences we have in common with all other people. Each
individual conceives a reality external to himself or herself in which objects occupy
definite positions in space at any given time. These move, and accelerate or de-
celerate, in response to the action of forces.

The replacement of qualitative observations with quantitative ones, made with
the help of various instruments, has led to more and more profound inductions:
the science of geometry developed from the measurement of agricultural fields and
other areas; Newtonian mechanics developed from astronomical observations and
measurements; Maxwellian electromagnetism developed from electrical studies and
measurements; and the Law of Definite Proportions, an indirect support for the
atomic theory of matter developed from chemical measurements.

When particles of matter were found to make tracks through supersaturated
vapor, and in a photographic plate, the atomic theory seemed to be confirmed.
However, no mechanics in which electrons, protons, or neutrons traced out in-
dividual mathematical curves proved to be satisfactory. A revolution in physical
science was necessary. This developed slowly. In order to explain black-body
radiation, Planck had to assume that a solid transferred energy to the electro-
magnetic field in discrete amounts, quanta. Einstein suggested that such quanta
persisted in the field as photons and was thus able to explain the photoelectric
effect. The young de Broglie saw that Einstein’s equation implied a relationship
between wavelength and particle .momentum. He suggested that this might also
apply to particles with a rest mass. Finally, Heisenberg and Schrodinger developed
a suitable mechanics for such particles.

Now, all these theories are induced from experimental observations. Conse-
quently, they appear only as a way of explaining the data on which they are based.
New results, at a deeper level, may very well require modifications or additions —
even a new revolution. Study the following material with these reservations in
mind.

xiii
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Chapter 1

Quantization of Translatdry Motion

1.1. Background Remarks on Time and Space

Each of us learns about the physical world through (a) experiencing various pro-
cesses in one’s own body, (b) interacting with external objects close at hand and
far away, (c) constructing and manipulating devices, (d) observing and measuring
reactions of the resulting instruments, and (e) studying accounts of the experiences,
manipulations, and measurements of others.

A person’s mind, first of all, notes an order in impressions that are recorded.
"Each perception is recognized as occurring either before, simultaneously with, or
after each other one. The senses also recognize mechanisms that repeat a certain
process again and again. The cycles of such a process occur in sequence and can
be counted. Furthermore, an observer can associate any given stimulus with a
particular cycle, as long as the mechanism is operating. Since parameters in the
machine may presumably be altered to make the length of a cycle as small as the
observer wishes, there appears to be no limit to the precision with which he can
thus pinpoint a given event.

An engineer can design a cyclic mechanism to be nearly free of secular changes
and split each of its cycles into parts that are apparently equivalent in duration.
The resulting machine is called a clock. Experimenters find that a good mechanism
does not seem to be affected by a change in position alone. A constant times the
number of cycles, or fractional cycles, executed by the clock within a given interval
is taken as the fime to be associated with the interval.

A second clock that behaves as the first one can be constructed. This can be
synchronized with the first clock in the neighborhood of a given body. An experi-
menter can then move the second clock slowly to a different body to establish a
time scale theére corresponding to that already existing on the first body. Reducing
the sizes of the bodies probably does not destroy the possibility of making this
correspondence: in our calculations we will presume that it can be done,

The mind also receives evidence of the coexistence of things through the eyes,
ears, and tactile nervous system. Furthermore, it finds that the sources of the
stimuli map onto a three-dimensional space at any given time. Measuring rods,
compasses, and protractors can be constructed and manipulated to study this

1



) Chapter 1

space. Insofar as an observer can tell, such devices are not altered by a change in
position alone, or by a change in time. Measurements with such tools show that-the
Pythagorean theorem holds to a high degree of accuracy in macroscopic situations.
So for these at least, the space is Euclidean and Cartesian coordinate frames are
adequate.

A person can keep such a frame in uniform rectilinear motion with respect to
three or more noncolinear force-free bodies that maintain constant separations
from each other. The frame is then said to be inertial. Each reference frame that
we will employ will not differ in the pertinent properties from an inertial system
during the significant intervals of time.

With available rays, an observer can only survey macroscopic and microscopic
parts of space. The submicroscopic elements making up any discernible region
need not be divisible into an arbitrary number of parts and may contain deviations
from the Pythagorean theorem, as long as the elements fit together to yield the
apparently Euclidean regions that are found. Simiarly, the subchronometric
elements of time add to give an apparently smooth uniform flow of the variable ¢;
but each such small element need not be infinitely divisible and may fluctuate from
the corresponding element at another location in some unknown manner. Since
these deviations from uniformity and homogeneity are not directly observable, we
will assume that they are not present. However, they might have to be considered in
a more comprehensive theory. 1

A macroscopic object can be broken into smaller parts, each of the parts divided
into still smaller parts, and so on, at any given time. At some stage in the process,
however, one reaches seemingly indivisible units that can be associated with sepa-
rated points in space. These basic constituents of matter are called particles. Similar
to an object, a particle is characterized by a mass and a charge. Furthermore, it may

possess a property analogous to angular momentum — a spin — and classifying
attributes such as hypercharge.

1.2. The Statistical Nature of Position, Velocity, and Momentum

In classical mechanics, it is assumed that each particle in a given system moves as 2
point through a space that is locally Euclidean and through a time that is uniform.
A definite smooth curve is traced out by the particle at a determinable varying rate.
This curve is called the path or trajectory of the particle.

No deyice can locate a particle and determine its velocity and momentum at any
given time with exactness. Not only are there errors in transforming the interactions
with the particle to numbers, but the interactions themselves introduce errors.
Classically, the uncertainties were attributed to the measurement process. Calcula-

“tions of various observable effects proceeded. Many of these failed, however.

The interchange of energy between vibrational modes of a solid and the electro-
magnetic field did not follow the classical laws. Interactions of the electromagnetic
field with electrons in a molecule or in a condensed phase resulted in discontinuous
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changes. The existence of stable atomic and molecular states could not be explained.
Little could be done with nuclear states. The behavior of such a simple system as
a homogeneous beam of particles was inexplicable.

On the other hand, considering some of the uncertainty to be an essential
attribute of the particles leads to a viable theory. A person does violence to a
system of particles when he assumes that each follows a definite trajectory.

In our analysis, we will assume that the space and time of the laboratory can
be infinitely subdivided, as in elementary calculus, and imposed on the system
under consideration. And, if a particle were at a certain point in this space at a
certain time with a given velocity, it is presumed to possess a kinetic energy T and a
potential energy V calculated in the same way as the corresponding classical quan-
tities. An isolated set of particles arranged in a particular way with given velocities
similarly exhibits a T and V equivalent to the classical kinetic and potential energies
that such a set would have. The sum of these energies is the total energy E for the
system.

If a person prepares aset of equivalent potential fields and employs an instrument
to introduce an identical particle into each in the same manner, he always obtains
a statistical distribution of initial positions and initial velocities. The distributions
persist over time. A set of such systems that is large enough so that adding more
members does not appreciably alter the statistical weight of any pertinent value
of a property is said to form an ensemble. An observer can presumably study an
ensemble and determine the probability that the particle is in a given small volume
d3r of the reference space at a chosen time ¢. Here, radius vector r is drawn from
the origin to the center of the differential volume. Dividing the probability by the
volume yields the probability density p for the particle. A system of particles, and
ensembles of such a system, can be considered similarly. The probability that the
first particle is in volume dr,, the second in d>r,, ... , the nth in d®r, may be
determined and the corresponding probability densities calculated.

Also determinable are the statistical kinetic energy and momentum of a particle
in a beam. Since these properties are independent of the density p at the point of
measurement, but are related to particle movements in the beam, one needs an
additional real function.

Essentially, two things have to be represented: distribution of the density and
unidirectional movements of the particles. However, a single complex function can
describe what one can know of both attributes very simply. The probability density
is related directly to the square of the absolute value of the function, while the

-. particle propagation is embodied in the phase angle. Indeed, we will find that the
relationship

p = (constant) ¥ * ¥ 1.1

serves except when Einstein’s relativity needs to be taken into account. Then, four
complex functions are needed, rather than only one.

Symmetry considerations will enable us, in principle, to complete the formula-
tion. In particular, we will consider how d¥ depends on ¥, on coordinates, and on
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time. Except in special circumstances where another choice is convenient, the
constant in (1.1) will be set equal to 1. We call ¥ the state function, or wave
function, for the given particle (or particles).

The principle of continuity, that small causes produce small effects, is applied,
not to each individual particle, but to the probability density and to the state
function. So whenever the influences that act on a particle vary smoothly with the
coordinates and time, the corresponding probability density varies smoothly. And,
the state function is analytic wherever the relevant V is analytic.

Since observable properties are determined by the way the pertinent particles are
distributed in space, on the average, and by how they propagate, these properties
are derivable from state functions. Indeed, we have the theorem of wholeness or
completeness: The function ¥ for a particle (or particles) represents the state of
the corresponding system to the extent that this state can be determined.

From the standpoint of probability, the simplest system imaginable is one in
which free movement occurs in a single direction with a constant p. Employing a
source with constant intensity and accelerating energy, or velocity selection, one
can also assume that the propagation preperties are as uniform as possible.

Since p would be constant along such a beam, the magnitude of ¥ would be
constant. The phase angle, however, would vary to represent the propagation. This
variation must be introduced in a way consistent with the prevailing symmetries, as
we will see in the next section.

In general, we have to consider particles subject to a varying potential V. But as
long as the variations are not abrupt, we may assume that the motion across an
infinitesimal element is effectively at constant ¥, and the results obtained for the
homogeneous beam and its reflection may be applied within the element,

1.3. A State Function Governing Translation

Freely moving particles do not distinguish between the different points traversed
in space or time;each point is equivalent in its average effect on a particle. Further-
more, a homogeneous beam, in which the particles move freely with the same
momentum, possesses a2 ¥ made up of uniform parts. The resulting symmetnes
enable us to construct a credible state function.

Let us consider a system of equivalent particles traveling freely in one direction
at one velocity (or momentum). Furthermore, let us suppose that the probability
density p is constant throughout the region under consideration. Foltowing the dis-
cussion in Section 1.2, we assume that all behavior of a typical particle is described
by the factor of p labeled W¥.-This function ¥ presumably varies smoothly, so
formal differentiation leads to the result

aw dx ; O¥ aw d\i’

'52—(.12 o= ( ! (1.2)

in which x, y, z are Cartesian coordinates of an inertial frame and ¢ is the time.

-
-—
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For the pure motion we are studying, there is no reason to expect any part of ¥
to exert a different effect on d¥ than any other equivalent part. The simplest way
to incorporate this symmetry is to make d¥ homogeneously linear in W. Further-
more, each point in the given region and time interval is assumed to be like any
other point in the region and interval. So the change in ¥ on going from one point
to the next needs to be independent of the initial point. But the change must
depend on

dx, dy, dz, dr. (1.3)

By symmetry, multiplying each of these small changes by a factor should multiply
the effects on d¥ by the factor. The infinitesimal d¥ therefore depends linearly
on each of the infinitesimals in set (1.3).

For simplicity, however, let us go to axes X', Y', Z' for which the direction of
the X' axis is that of the motion. Then the only spatial coordinate affecting ¥ is
x' in the region of interest. And by the arguments just given, the variation in the
state function is linear in dx', linear in d¢, and homogeneously linear in W. We thus -
have

d¥ = kW dx' + y¥dr : (14)

where k and <y are parameters to be identified. Our argument allows k and 7 to be
imaginary or complex, so we may alternatively consider )

d¥ = k¥ dx" - iwV¥dr. (1.5)
Let us separate variables in (1.5)
o Ly
g = fdx' —icwdt (1.6)
and integrate
W =4 etkx’ g-iwrt, (%))

Imposing (1.1) with the constant taken equal to 1, as we commonly do in
normalizing functions, yields the probability density

p=V*V¥ =At(eikx')-(e—iw!)tA eikx’ p—iwt Qa .8)

This reduces to an expression independent of x’ and ¢ only if k and w are real (k
and vy imaginary). Since such independence exists in the homogeneous propagating
beam, we assume that k and w are real in the beam. Then (1.8) reduces to

p=A*A. 19)
A general displacen;ent may be written as

dr=dxx + dyy + dzz. (1.10)
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Element dx’ is the component of dr in the direction of motion. If e is the unit
vector pointing in this direction and ke is written as k, then

kdx' =ke-dr=k-dr (1.11)
and ' i _

kx'=ke-r=k-r. A (1.12)

The expression governing pure translation (1.7) now becomes

W =Aelk Te—iwl= geilk - wt) (1.13)
A given phase of this W travels with a given value of the angle

kx'—wt=k-r—wt =a. (1.14)
Indeed, the corresponding coordinate x' obeys the equation

r Wl

x-kt+k, (1.15)
which yields

&Ly - (116)

for the phase velocity w. Parameter w is called the angular frequency with respect
to time #; and parameter k, the wavevector for the motion.

In the unprimed Cartesian coordinate system, parameter k has the components
k=kX+ky+k,. (1.17)
Since
k-r=kx+k,y+k,z, (1.18)
~ formula (1.13) expands to
=4 eikxx eikyy eikzz e—iwt (1.19)
and (1.5) to
d¥ = ik, W dx + ik, W dy + ik, ¥ dz — iw¥ dt. (1.20)

Equation (1.20) describes how ¥ varies within' the homogeneous beam, for a

general orientation of axes; Equation (1.19) describes the resulting coherent wave
function.

Example 1.1. What is the periodicity of the exponential function?
The exponential function is related to trigonometric functions by the identity

ef® = expia = cos2 + isina.



