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PREFACE

This book is an integrated and relatively compact presentation of cytological,
physiological, and molecular data on plasma membranes of animal cells.
For a long time the study of the structure and function of biological mem-
branes has been one of the more active endeavors of biological investigators.
So many disciplines are involved — biophysics, biochemistry, morphology,
pharmacology, physiology, physical chemistry, molecular biology — and
the literature is so extensive that it is difficult for workers of diverse training
and experience to fully appreciate the level of understanding and the advances
within neighboring fields. A young biologist contemplating investigations on
membranes and an older worker trained in another field both require a con-
ceptual insight into the nature of membrane problems and a scientific intuition
into their solution. The recent scientific conferences and symposiums dealing
with general aspects of membranology, a multitude of research reviews and
books, and at least one new journal devoted solely to membrane biology have
served to unify the field. However, much of this material characteristically
contains articles that are restricted in scope and written for scientifically
sophisticated readers. None is sufficiently broad to embrace all aspects of the
work on biological membranes and at the same time sufficiently integrated
to provide a background necessary to relate one finding to another. None is
exceptionally noted for its readability. This book may help as an introduction
to that literature in several ways.
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xviii preface

By discussing the current state of our understanding of the nature of mem-
brane structure, permeation, and excitability of both living and artificial
systems, the book covers a broad range of knowledge, but it is clearly not
comprehensive. Within the areas covered, only work that I consider impor-
tant or interesting is included. Investigations on cytoplasmic membranes and
on plant and bacterial membranes are barely mentioned; pinocytosis and
phagocytosis are only acknowledged: and the role of the cell surface in
cellular contact and immunological relationships is ignored completely —
to the dismay of virologists, immunologists, pathologists, tissue culturists,
and cancer researchers, among others. This book is restricted but not super-
ficial. The intent is not only to present a readable account of the major ideas
of the various approaches to membrane study and their broader implications
but also to include the complications, limitations, alternative explanations,
and important minor points to these investigations. This book is concise and
elementary but not simple. The intent is to inform the reader so that he will
be able to more effectively glean the sophisticated books, reviews, and re-
search papers on membranes and evaluate their interpretations in his own
mind. Sufficient knowledge is extant to permit an uncomplicated summary of
only the widely held conclusions and to tell a pretty story, but a beginner
would not be well served and a secasoned veteran would not be well satisfied
by such an approach. Difficulties with arguments are readily presented, but
experimental and language technicalities and ponderous derivations are
reduced. Experimental procedures are discussed where they are important to
the proper interpretation of the data that they yield. The important quantita-
tive analyses of membrane data are hinted at, but full and, hence, proper
treatment is to be found in the publications cited.

The many references cited are intended more as a guide through the
literature than as a historical account of authenticity; so a large number refer
to reviews and interpretative work. The examples selected for a more detailed
analysis represent my own favorites rather than an attempt to tell all or to
give the most recent. Experienced investigators will undoubtedly be unhappy
about the treatment given some topics as well as the exclusion of others.
The success of my approach will be determined by the usefulness of this small
volume to you.

Historically, this manuscript is derived in part from a series of discussions
held many years ago with members of the Engineering Physics Department
of the E. I. du Pont de Nemours Company, Wilmington, Delaware. The
time to finish it became more readily available as a result of the freedom from
academic duties beyond normal teaching and research provided by a sab-
batical leave from the Univereit, .f Nelaware and a Special Fellowship from
the National Institutes of Neuro!og.cal Diseases and Stroke to work on other
things at the Massachusetts Institute of Technology and the Marine Biological
Laboratory at Woods Hole.
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INTRODUCT/ION

chapter one

Cellular activities are characterized by their occurrence at or near membranes
located throughout the cell (Figs. [--3). For example, much of cellular metab-
olism is associated with enzymes aligned on cristae of mitochondria; protein
synthesis is associated with ribosomes attached to endoplasmic reticulum;
lipid transport, with Golgi apparatus; photosynthesis, with grana within
chloroplasts; light reception, with retinal rods. The interest here, however,
is concerned with the sux;face of the cell—the cellular membrane or, more
properly, the plasma membrane—the barrier or interface between the living
inside and the dead outside of the cell.

A variety of physical measurements indicates that the cell surface is about
75A thick although the published figures vary greatly. This thin structure is
made of protein, some carbohydrate, and lipid, mostly sterol and phospho-
lipid. For more than 30 years the molecular arrangement has been described
as a double layer of lipid between two protein layers. Studies using X-ray
diffraction, polarized light, electron microscopy, and permeability data have
in general confirmed this view although newer techniques and approaches
have exposed globular substructures and have confused the satisfaction
with this description. Pores in membrane structures have been proposed
with regularity, but, as the supporting experiments are all indirect ones and
as inivestigators become more familiar with dynamic concepts, the need for
the existence of a pore as a fixed morphological structure to understand
membrane permeation is becoming less important.



2 Introduction chapter one

Figure 1. Examples of membranous structures in cells: three adjacent frog kidney
cells showing at least five types of membrane. C,, C,, and C; are portions of
three cells separated by plasma membranes (PM) and a small amount of extra-
cellular space. The double nuclear membrane (NM) appears at the upper right.
A mitochondrion (M) and its cristae are seen at the lower left. Smooth endo-
plasmic reticulum (ER) and ribosomal particles appear in the cytoplasm of
Cj3 especially. The rows of membranous vesicles (MV) near the plasma
membrane of C; are considered by some workers to be plasma membrane that
is either forming or degenerating ( > 40,000).

Life exists in a liquid pha?c. Cells contain and surround themselves with
liquid media; water isthe solvent. Materials continuously exchange between
the inside and outside of cells, dead or alive. Obviously, the cell surface is
not an absolute barrier. In living cells, the plasma membrane regulates this
exchange with care by processes best described by nonequilibrium thermo-
dynamics; only a dead cell is in complete equilibrium with the solutes in
its environment. Larger molecules permeate the membrane more slowly
than do smaller ones. Molecules soluble in lipid cross the cell surface barrier
faster than others. The transfer of polar molecules is impeded. But water



chapter one Introduction 3

Figure 2. Examples of membranous structures in cells: rod membrane in turtle
retina and Golgi membrane in frog kidney cells. Portions of three mitochondria
(M) can be seen at the upper right and a small part of nucleus (N) and the double
nuclear membrane at the bottom as well as Golgi apparatus (G). The endoplasmic
reticulum in these cells is highly vesic.iar “ < 40,000). A portion of the outer
segment of a retinal rod from turtle ¢yt (insert) illustrates the densely packed
membranes characteristic of this light recepror (< 14,500).

molecules are among the fastest to permeate cells. Often the transport of
molecules across the plasma membrane cannot be explained solely on the
basis of concentration and charge gradients. Metabolic energy appears
necessary for some transport processes and a cell will accumulate large
concentrations of particular molecules while excluding others. Indeed the
pronounced separation of charged molecules across the cell surface is the
basis for normal functioning of excitable cells in nerve and muscle. Energy-
requiring enzymes, carrier molecules, gates. and special membrane prop-
erties become involved in the explanations for the permeation by many
substances even in cases where the steady state distribution appears to be
adequately explained by the rules of simple diffusion.



