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Sustainable Timber
Design

This new resource covers the material selection,
structural design and connections detailing of truly
sustainable timber buildings through:

¢ consideration of the nature of wood and the
heritage of timber construction, including the
importance of forestry and conservation

* areview of modern techniques to improve
the durability, fire resistance and predictability
of structural timber elements and their vital
connections

e analysis of the many architectural and structural
options, from roundwood shells through glulam
arches and gridshells to long span hybrid structures

* case studies from around the world illustrating the
principles discussed and the true potential of timber
construction

Historically there has been an imbalance between

the availability of information on structural timber
design and the much more widespread familiarity

with traditional structural materials such as steel and
concrete. This book aims to help redress the balance by
presenting the essential design principles involved in the
creation of elegant, user-friendly timber buildings that
are practical, economic, and thoroughly sustainable.

Designed to support specialist study into the benefits
of 21st Century timber engineering, this book also
offers architects, engineers and other construction
professionals practical advice on all aspects of modern
timber architecture.

Michael Dickson, C.B.E., FR.Eng, F.I.StructkE., EI.C.E.,
Hon. F.R.I.B.A., was a Founding Partner of Buro
Happold and Chairman 1996-2005. Buro Happold

is an international multidisciplinary engineering

and consultancy practice with offices in Europe, the
Middle and Far East, and the USA. Michael is a Visiting
Professor of Engineering Design at Bath University,
School of Architecture and Civil Engineering, and was
President of the Institution of Structural Engineers in
2006. He continues as a consultant to Buro Happold
and a trustee of BRE.

Dave Parker, B.Sc., C.Eng., FI.C.E., FR.S.A., F1.Q.A.,
was Technical Editor of New Civil Engineer magazine
for 12 years before leaving in May 2006 to become a
freelance author and journalist. He is a former Visiting
Professor of Civil Engineering at Queen’s University
Belfast, and his interests include renewable energy and
the history of construction. In 2014 NCE asked him to
return as technical editor emeritus.
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Foreword
Sustainable timber design

As a consequence of a growing emphasis on
sustainability, timber and wood products are
increasingly being used in the design, engineering,
construction and fitting out of a wide array of building
types. In many countries around the world, as in
Scandinavia and the USA, the use of timber in buildings
has always been preferred, whereas here in the UK
there is still a need for engineers, architects, clients,
constructors and others to become more familiar with
and confident in the use of timber and wood products
in buildings.

Sustainable Timber Design addresses this need. It
highlights the up to date information required to use
timber in today’s and tomorrow’s built environment.

It enables, provokes and inspires innovative thinking,
by bringing together the disparate, yet related factors
required for sustainable buildings. These include more
traditional elements of wood properties, engineering,
performance in fire and preservation, along with the
sustainable sourcing, environmental impacts, innovative
jointing, modified wood products and innovative
design and engineering approaches needed in the built
environment of today and the future. This is the new
system of factors that must be considered in designing

and engineering sustainable buildings. It is new
knowledge relevant both to those working in countries
that already have strong cultures and experience of
using timber, along with those with more limited
experience. So, this book is valuable to all.

Sustainable Timber Design brings its extensive
information together in an excellent style. It is a good
read — a flowing text that is accessible and absorbing.

It brings theory and principles to life through a superb
array of case studies, beautifully illustrated, which show
how to use timber and wood products in practice. It
inspires innovative thinking.

Sustainable Timber Design will sit comfortably
on a coffee table or an engineer’s and designer’s
bookshelf, in a university or local authority library, in
the reception area or offices of any company working
within the wood sector, or in any organisation seeking
to apply innovative and sustainable thinking in the built
environment.

As | have done, | am sure you will enjoy and derive
benefit from Sustainable Timber Design.

Dr Peter Bonfield, OBE, FREng, FICE, FIMMM, FCIOB,
FIWSc, Chief Executive, BRE Group



Preface

In these early decades of the 21st century, timber is
enjoying a renaissance as a mainstream structural
material. Projects that once would have been executed
in steel or reinforced concrete are now featuring timber
in their primary load bearing structures. Buildings
constructed largely of high quality timber and timber
products are appearing regularly on short lists for major
architectural and engineering awards. Designers even
now are planning timber residential towers higher than
ever believed possible just a few years ago. There has
been a massive sea change in the construction industry’s
attitudes to timber structures, driven largely by one
factor — sustainability.

Every human being on the planet has a vested
interest in mitigating the unpredictable effects of the
climate changes that are now inevitable. Construction
in all its aspects, from raw material extraction and
processing to erection, maintenance and demolition, is
a major consumer of fossil fuels and hence a significant
contributor to the greenhouse effect. Anything that
can be done to reduce this impact on the environment
should be seriously considered by clients, specifiers,
designers and contractors alike. And one of the most
effective options is to switch to timber.

Unfortunately, this option is still not as
straightforward as it should be, due largely to the
imbalance between the knowledge and understanding
of timber design and engineering techniques and the
much more widespread familiarity with traditional
architectural and structural materials. This book aims to
help redress this balance by presenting the principles of
design necessary to achieve elegant and user-friendly
buildings in structural timber that are practical and
economic as well as thoroughly sustainable.

Such efforts to improve the awareness of timber’s
potential are supported by the increasing availability
of advanced computer aided design and 3D virtual
prototyping techniques. New design codes have
been introduced, improved timber products based on
advanced modern adhesive technology are coming
onto the market. Timber’s traditional weaknesses —
inflammability, variability, susceptibility to insects

and fungi — can now be largely nullified by informed
design and specification or by using thermal or
chemical processing to transform the basic material into
something more stable and durable.

Additional support comes from an increasingly
sophisticated and integrated timber supply industry. In
Europe and North America there have been significant
improvements in the efficiency and sustainability of
forestry, with ‘weed’ trees and thinnings no longer
discarded or burnt but now seen as potentially valuable
raw materials for engineered timbers such as oriented
strand board (OSB) and laminated veneer lumber
(LVL). High quality timber products ranging from
floors through doors and windows to massive long
span structural frames are now widely available, all
contributing to lower carbon footprints.

At the same time there has been a return to the
origins of timber construction, albeit with the benefits
of computer aided design and modern adhesives and
machine tools. Green oak construction is flourishing,
for homes as much as for theatres and galleries, with
traditional craftsmen working hand in hand with
21st-century designers. Roundwood, in the form of
debarked softwood thinnings, is perhaps the earliest
structural material, yet it still has a worthy place in the
modern design palette, as several landmark projects can
testify.

To achieve elegant, efficient and robust structures
in all forms of timber it is advisable to remember the
words of 20th-century US architectural icon Frank
Lloyd Wright. In 1928 he wrote ‘To use wood with
intelligence, we must first understand wood.”* In other
words, a thorough understanding of the consequences
of the natural variation in timber grain, density and
moisture content is essential if a successful, durable
and visually pleasing outcome is to be achieved. This
is particularly relevant to the design of the connections
between timber components.

It has been said that a timber structure in reality
is an array of connection devices separated by timber
elements. Recent research has developed a vast range of
connections, many involving groups of small diameter
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metal bolts or self tapping screws acting in conjunction
with separate metal plates. Using such techniques,
complex three-dimensional structures can be assembled
with confidence and without disfiguring the aesthetic
qualities that make timber buildings so appealing to
their users and occupants.

Sustainability is not just about reducing the carbon
footprint of our current construction activities. As the
world’s population continues to grow, the challenge
is to provide decent yet sustainable habitation for all
these new members of the human race. Advanced
timber design and construction techniques can be
at least part of the answer, and a significant part as

well. Sourcing timber from sustainably managed and
stewarded forests not only allows societies across the
world access to plentiful supplies of renewable and
versatile construction materials, it also encourages the
conservation of the forests, with long term benefits to
local populations both human and animal. In view of
all these benefits, this book will conclude that structural
timber should be the very first option considered by any
designer seeking to create a truly sustainable building.

* In the Cause of Architecture: Wood, by Frank Lloyd
Wright, Architectural Record, May 1928 page nos



Given a free choice, human beings prefer to live and
work in buildings that feature visible and accessible
timber. Timber’s sensual qualities: its distinctive colours,
surface textures and aromas, speak to something
fundamental in the human psyche. Metal and concrete
fail to resonate in the same way; only stone has
something of the same appeal. This preference may

be hardwired into our genes, the legacy of countless
generations over the millennia who have turned to
timber for shelter and warmth, and who learned how
to recognise and exploit the diversity of physical and
chemical properties available in the world’s forests.
Despite this instinct, however, timber as a primary
structural material went into decline in the late 19th
century, swamped by the new technologies of iron,
steel and reinforced concrete with their more easily
predictable properties and inherent incombustibility.
Nevertheless, the basic human desire to live surrounded
by timber never went away, and exposed oak beams

and stripped pine floors continued to be highly desirable

features in domestic housing.

As this book will show, this preference is now
finding fresh expression. There is an exciting revival
of large scale timber construction throughout the
world. Many fine architectural designs are now to be
seen across Europe, in North America, in Australasia
and elsewhere. Timber is moving out of the domestic
housing market and is now a realistic alternative
to steel and concrete in large scale roof and frame
structures, as the examples and case studies that
follow will demonstrate. Timber’s versatility and
resilience as a structural material can now be fully
exploited by modern design techniques. Indeed,
there is an increasing body of expertise available to
ensure successful production and fabrication of timber
elements. Educational and perceptual barriers are falling
slowly so that architects and engineers are becoming
more aware of the benefits timber can offer. And as
clients and occupants become increasingly familiar with
the realities of timber buildings, demand for them can
only increase.

This revival has solid foundations. By the turn
of the 21st century, even newer technologies were

transforming the structural landscape. Advanced
adhesives, preservatives and fire protection were
making it possible to manufacture ‘engineered timber’
products such as glue-laminated (glulam) beams and
arches, laminated veneer lumber and l-joists. More on
engineered timber can be found in Chapter 4, but the
key factor is that such products are considerably more
predictable and stable in their properties than traditional
sawn sections, and so structures can be designed and
analysed with a much higher degree of confidence
for resilient, predictable performance and enduring
elegance.

Figure I.1 Once a Tudor barn, the St Barnabas Centre in Thorley, Hertfordshire,
UK, is now a very popular venue for church services, conferences and
community events.

Credit: Dave Parker.
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Figure 1.2 Students at Hereford College of Arts in the west of England also enjoy the unique ambience of a timber building.
Credit: Lance McNulty.

Despite this, timber still struggles to gain recognition
as a viable structural option. Two other factors hold it
back. Engineered timber structures are still perceived as
more expensive than conventional designs. Also there
is still the lingering feeling that timber construction is
a craft-based process. This is a perception that is now
being rectified by improved familiarisation and training
in timber design for engineers and architects and better
organised support from industry.

That there is still a place for the craftsman is
perhaps best shown by the revival of green oak
construction, most notably in the recreation of London’s
Globe Theatre, but also in many new private homes
and other buildings. These still depend mainly on the
traditional mortise and tenon joint and its relatives,
but set within the constraints of modern standards of
performance. However attractive the final results may
be, such projects are not yet seen as in the mainstream.
A better example are the parabolic arches glue
laminated from Polish larch that frame the stepping

glazed enclosure of the Winter Garden in the centre of
Sheffield, England — ironically, a city renowned for high
quality steel production.

Such large scale timber structures are becoming
increasingly common across the world, encompassing
schools, arenas, swimming pools, theatres, air terminals
and many others. Originally, the driver was almost
entirely architectural: now another factor has entered
the equation, one that makes the structural timber
option even more attractive. As the world warms, the
climate changes unpredictably and human populations
continue to grow, the sustainability of each and every
human activity comes under scrutiny. Looked at from
that point of view, timber’s potential as a realistic
alternative to steel and concrete is undeniable.

To fully appreciate and take advantage of timber’s
inherent sustainability, it is necessary to begin by
considering the role woodland plays — or should play -
in the global environment. Growing trees extract carbon
from the atmosphere and lock it up in their structure,
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Figure 1.3 Interior, Winter Garden, Sheffield
Credit: Adam Wilson.



