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PREFACE

The authors of this book focus on the latest developments in robot kinematics and motion
planning. The first chapter seeks to identify the governing rules implemented in the central
nervous system (CNS) to solve redundant mapping problems from an experimental observation
approach. The novelty of this chapter is in the obtained motion planning results for a constraint
elbow joint during reaching movements. The second chapter focuses on the problems that exist
in the two-norm and infinity-norm and solutions to these problems involving bi-criteria (BC)
motion planning schemes of different joint-level vectors. In the third chapter, trajectory
generation methods for the application of thermal spraying processes are introduced. In the
fourth chapter, an investigation on the robot kinematics is proposed to find the rules of motion
in an application case. The results demonstrate the motion behavior of each axis in the robot that
consequently permits the identification of the motion problems in the trajectory. In the fifth
chapter, kinematic properties of a new planar parallel manipulator is investigated by means of
the theory of screws.

The human arm can perform versatile reaching actions to achieve various goals in
activities of daily living. For the motion planning of a point—to—point reaching task, the CNS
(central nervous system) resolves two redundant mapping problems: 1) hand trajectory
formulation and 2) arm posture selection. Chapter 1 seeks to identify the governing rules
implemented in the CNS to solve such redundancies from experimental observation approach.
The novelty of this work is in the obtained motion planning results for a constraint elbow
joint during reaching movements. The authors believe that the CNS generates the motion by
following the governing rules despite reduced arm mobility and this enables us to tap into
fundamental principles of the human motor coordination with the redundancy resolution.
Specifically, the paper discusses point-to-point reaching motions performed by multiple
subjects with an elbow locking brace. The recorded motion kinematics of the experimental
data is compared to multiple computational models for analyzing the behavior from hand path
geometry and temporal control aspects. For the arm posture selection, the kinematic and
dynamic contributions of each joint DOF (degrees of freedom) are computed to identify the
governing strategy. Our results suggest that the hand path geometry is close to the least
kinematic effort (LKE) model. With regard to the temporal control of motions, it was found
that the hand speed profile is generated in the same context as healthy arm motions,
maximum smoothness, regardless of the reduced mobility. For the arm posture selection, our
observations show that the humeral rotation DOF is actively incorporated for both the hand



viii Wayne Adams

path formulation and the arm posture selection. The analysis on the kinematic and dynamic
contributions of each joint DOF show that the CNS tends to adopt minimum kinetic energy
(MKE) cost principle to resolve the inverse kinematics problem.

To remedy the problems that exist in the two-norm and infinity-norm solutions, more
balancing solutions called bi-criteria (BC) motion planning schemes of different joint-level
vectors (e.g., joint velocity, acceleration and torque vectors) are summarized and presented in
Chapter 2. Such kinematic and/or dynamic schemes of redundant manipulators can
incorporate joint physical limits, such as joint limits, joint velocity limits and joint
acceleration limits simultaneously. Furthermore, the presented schemes could finally be
unified into quadratic programming (QP) formulations which could be solved simply by
using recurrent neuronet solvers [e.g., dual neuronet, DN, and linear variational inequality
(LVI)-based primal-dual neuronet, LVI-PDN] due to the adaptive processing nature.
Computer simulations based on different kinds of robot manipulators (e.g., PUMAS560 and
PA10) are summarized and presented to illustrate the validity and advantages of such neural
bi-criteria motion planning schemes for redundant robot manipulators.

With the increasing demands for accuracy, repeatability and working intensity in
industry, more and more industrial robots are introduced to replace manual operations. In
order to ensure and improve the robot performance in industrial applications, the studies
concerning the trajectory generation and the kinematic analysis of robots are becoming more
and more important. For robot programming, most operations are still done online: online
programming, online measurement, online testing, etc. The most common method is called
programming by teaching, which is appropriate for simple trajectories. However this method
will be tedious and time-consuming when the robot movement is complex, and the trajectory
quality is dependent on the operator's skill. Another programming technology called offline
programming is a good solution that can overcome the online programming tolerances by
using the CAD/CAM software.

In Chapter 3, the two programming methods mentioned above are introduced and the
application of robot offline programming in thermal spray is described. An add-in program
called Thermal Spray Toolkit (TST) is developed to provide a complete solution for trajectory
generation in the thermal spraying process. With this program, operator can automatically
generate trajectory based on the workpiece geometry and operating parameters, which
includes the trajectories for plane surface, circular surface. curved surface and rotation
workpiece as well. In order to obtain a desired coating profile, a coating thickness simulation
method is also introduced in this chapter, which enables the operating parameter optimization
after trajectory generation. Besides, the application of external axis in thermal spray is also
presented, which provides a solution to extend robot reaching space and the possibility to
improve robot productivity for complex workpieces.

In Chapter 3, the trajectory generation methods for the application of thermal spraying
process are introduced. An add-in program to provide automatic generation of trajectory for
different kinds of workpieces geometry is presented. Although the robots are designed as
highly accurate manipulators and the trajectory generation methods are also largely improved,
the payloads and their performance limit can cause dynamic divergences between the
expected and the actual robot trajectories during the manufacturing process. In the cases
where complex workpieces are put forward, the robot performance is found to be limited.
Thus, in order to ensure and improve the robot performance in industrial applications, the
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studies concerning the kinematic analysis and optimization methods of robots are becoming
more and more important and drawing more attention.

In Chapter 4, an investigation on the robot kinematics is proposed to find the rules of
motion in an application case. The results demonstrate the motion behavior of each axis in the
robot that permits to identify the motion problems in the trajectory. This approach allows to
optimize the robot trajectory in a limited working envelope. With the kinematic analysis
approach, the optimization method for torch setup and workpiece placement are proposed.
And as the trajectory is generated, optimization methods focusing on the target point and its
orientation are presented. With the optimization methods proposed in this chapter, it is able to
improve robot performance and achieve a more accurate trajectory.

In Chapter 5 some kinematic properties of a new planar parallel manipulator equipped
with four actuable kinematic pairs to realize three degrees of freedom is investigated by
means of the theory of screws. The forward displacement analysis, a challenger task for most
parallel manipulators, of the robot is carried-out by handling closure equations formulated
upon the coordinates of a point embedded to the moving platform yielding a univariate
solution, a nearly closed-form solution. After, simple and compact input-output equations of
velocity and acceleration are obtained by resorting to reciprocal-screw theory. The
escapement from singular configurations of the robot, an open problem of parallel
manipulators, is investigated based on the properties of the Lie product of the Lie algebra
se(3) of the Euclidean group SE(3). A case study covering most of the topics treated in the
contribution is included with the purpose to show the application of the method. Furthermore,
the result of the velocity and acceleration analyses obtained by means of the theory of screws
are verified with the aid of commercially available software. As far as the authors are aware,
the topology of the robot under study was not considered in previous works. Finally, although
the issue of escapement from singular configurations has been deeply investigated for serial
manipulators some years ago, its inclusion for the parallel manipulator at hand can be
considered as an outcome of the contribution.
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Chapter 1

EXPERIMENTAL OBSERVATIONS ON HUMAN
REACHING MOTION PLANNING
WITH AND WITHOUT A REDUCED MOBILITY

Hyosang Moon"", Nina Robson', Reza Langari’

and John Buchanan’
'Department of Mechanical Engineering, California State University, Fullerton, CA, US
*Department of Mechanical Engineering, Texas A&M University, TX, US
*Department of Health and Kinesiology, Texas A&M University, TX, US

Abstract

The human arm can perform versatile reaching actions to achieve various goals in activities of
daily living. For the motion planning of a point—to—point reaching task, the CNS (central
nervous system) resolves two redundant mapping problems: 1) hand trajectory formulation
and 2) arm posture selection. This paper seeks to identify the governing rules implemented in
the CNS to solve such redundancies from experimental observation approach. The novelty of
this work is in the obtained motion planning results for a constraint elbow joint during
reaching movements. The authors believe that the CNS generates the motion by following the
governing rules despite reduced arm mobility and this enables us to tap into fundamental
principles of the human motor coordination with the redundancy resolution. Specifically, the
paper discusses point-to-point reaching motions performed by multiple subjects with an elbow
locking brace. The recorded motion kinematics of the experimental data is compared to
multiple computational models for analyzing the behavior from hand path geometry and
temporal control aspects. For the arm posture selection, the kinematic and dynamic
contributions of each joint DOF (degrees of freedom) are computed to identify the governing
strategy. Our results suggest that the hand path geometry is close to the least kinematic effort
(LKE) model. With regard to the temporal control of motions, it was found that the hand
speed profile is generated in the same context as healthy arm motions, maximum smoothness,
regardless of the reduced mobility. For the arm posture selection, our observations show that
the humeral rotation DOF is actively incorporated for both the hand path formulation and the
arm posture selection. The analysis on the kinematic and dynamic contributions of each joint

" E-mail address: hyosangmoon@gmail.com; Address: Mechanical Engincering, California State University,
Fullerton, CA 92834-6870, US (Corresponding author)
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DOF show that the CNS tends to adopt minimum kinetic energy (MKE) cost principle to
resolve the inverse kinematics problem.

Keywords: Human motion planning, motor coordination principles, reduced mobility

Introduction

Human arms perform versatile reaching motions in daily activities to achieve complex
desired position and orientation of the end-effector (i.e., hand). Although it seems effortless,
producing such limb motions involves a branch of redundant mapping problems, so-called
degrees of freedom problem, described by Bernstein [1]: how does the CNS (central nervous
system) solve the complex problem of motor control without conscious effort to complete
skillful actions? This question can be interpreted within the human point-to-point reaching
process as presented in Figure 1.

There are two redundancy problems in the overall process of the point-to-point reaching.
The human subject sets the target point as the final hand location in the workspace (usually with
respect to the visual coordinates) while the current configurations (e.g., hand location and arm
posture) are perceived by the sensory inputs (i.e., visual and proprioceptive information).
Assume that there is no external contact during the reaching motion so that the subject’s CNS
does not need to incorporate obstacle avoidance or direct force control (i.e., controlling the
contact force and moment to desired value with explicit closure of a force feedback loop [2]).
Then the overall control procedure can be modeled as a position mode control of the human arm
as a serial linkage manipulator. Since the main objective of the point-to-point reaching is
maneuvering the end-effector to a certain position in the workspace, the subject’s hand naturally
gets the greatest attention of the CNS [3]. Therefore, in order to fill out the gap between the
initial and the final task points in the workspace, the point-to-point reaching needs to be planned
in a hand trajectory format. In this process, the first redundancy problem occurs when the
geometry and the speed of hand trajectory should be selected among infinite numbers of
possible ways and their combinations (see Figure 1(a)). As an example shown in Figure 1, grey
hand paths indicate possible candidates while the red path describes a patterned path generated
by the CNS. Once the hand trajectory is determined, the CNS needs to configure the arm
posture by resolving another redundant mapping problem (see Figure 1(b)) to generate control
commands for each controlling DOF (degrees of freedom). As an example, the arm posture can
be fully specified in the joint space by solving the corresponding inverse kinematics problem.
Note that the number of independent joint DOF is greater than the sufficient six DOF needed to
specify the hand kinematics in a spatial workspace (three positions and three orientation angles).
Furthermore, on the actuation level, the redundancy of the problem is magnified due to multiple
connections of skeletal muscles spanned over each joint DOF motion.

What is the best explanation for the efficient and optimal problem solving ability of the
CNS? From many experimental observations, it is generally accepted that governing rules
(either innate or learned) in the CNS impose some additional constraints and induce a finite
set of preferred patterns (e.g., the tendency of synchronizing inter limb coordination [4]).
Such governing rules can be observed from the experimental results and approximated as
computational models. Multitude models have been studied to approximate behaviors of such
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governing rules in the point-to-point reaching actions. Most of them fall into either minimum
principles or data fitting formats as presented later in this chapter.

This study seeks to identify the governing rules of the point-to-point reaching within the
CNS from an experimental observation approach. Unlike most of experimental studies on the
human arm reaching, a kinematic constraint on the elbow joint DOF (i.e., elbow locked in
place) is imposed to collect the experimental data and its result is compared to the data
without the elbow constraint. The reason of the imposed elbow joint constraint is on the base
assumption of this study that even though the imposed physical constraint can yield
adaptations in resulting motions, the governing rules are preserved in the CNS. Therefore, by
observing the invariant features of the motion kinematics and dynamics. we can induce key
characteristics of such governing rules implemented in the CNS. This idea is supported by the
observations on the motor recovery for reaching in stroke patients. Roby-Brami et al. [5]
found that the stroke patients seek a way to recover the original control strategies through
therapeutic arm reaching tasks against their physical impairments.

As the elbow locking condition constraints the arm workspace on a curved surface, the
condition affects the hand trajectory planning process shown in Figure 1(a). Some
experimental studies have been conducted on the arm reaching on a geometrically constrained
surface. In their reaching experiments on a hemispheric constraint surface, Sha et al. [6]
showed that a healthy subject preserved a bell-shaped velocity profile while the hand paths
approached to the geodesic curves (i.e., shortest path on the constraint surface) by training.
Liebermann et al. [7] characterized the hand trajectories on a similar workspace constrained
on a hemisphere by a mechanical linkage system. From the similar experimental results, they
came up with a different conclusion on the hand path geometry that it may follow the
smoothest paths (i.e., thumb lines on the hemispheric surface) rather than the shortest paths
(i.e., geodesic curves). The temporal characteristic (i.e., smooth bell-shaped velocity profiles),
however, was preserved regardless of the hand path geometry. Similar results of above
studies support the underlying idea of this study: the CNS keeps the governing rules while it
generates adapted hand paths against the constrained hand kinematics due to extrinsic factors
(e.g., contact specified tasks such as surface welding). However, the hand kinematics
constrained on the curved surface only affects the first redundancy problem (i.e., the hand
path formulation, see Figure 1(a)) due to fully applicable arm mobility in the joint DOF
space.

We believe that the loss of arm mobility can extend its effects up to the other redundancy
resolution process: arm posture configuration along the hand path (see Figure 1(b)).
Therefore, it is expected that the adopted elbow constraint condition in this study will enable
us to tap into fundamental principles of the human arm reaching coordination by disturbing
both of redundancy problem solving processes within the CNS. Some previous studies
applied computational models to understand reaching behaviors with a joint constraint
condition.Bullock et al. [8] introduced a self-organizing neural model to justify the automatic
corrections in the reaching with clamped joints. Rosenbaum et al. [9] explained the
compensatory reaching motion against the elbow restriction with weighted sum of stored
postures in the CNS. Furthermore, to explain the motor equivalence phenomenon (i.e., the
ability to complete the desired task with different combinations of controllable DOF [9]).
Saltzman and Kelso [10] focused on a task dynamic approach which regards the
compensatory strategy as an implicit consequences of the task dynamics. Mussa Ivaldi et al.
[11] approached the issue from the equilibrium point control viewpoint. It is expected that the
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resulting observations from this study can contribute to shed a light on researches on the
human motor coordinations by providing a novel technique to describe the underlying
principles of such complex behaviors, and to reproduce the human-like natural motions with
relatively simple synthesis for various robotic and mechatronic applications.

Background Knowledge on Motor Neuroscience

In which Representation the Motion Is Characterized?

In his work, Brooks [3] classified the CNS into two interactive functional subsystems;
limbic and sensorimotor systems. For the motion generation, the limbic system deals with
emotional needs (i.e., feeling and desire) by recognizing the significance of a need-initiated
stimulus while the sensorimotor system governs the perception and motor functions. In his
work, the link between two subsystems is explained as follow: the “need-directed motor
activity” initially formulated in the limbic system is converted into overall plans for the “goal-
directed motor actions” in the highest level hierarchy of sensorimotor system [3]. Then in
which representation the reaching motion is characterized in the sensorimotor system,
kinematics or dynamics? It seems that the kinematics and dynamics of reaching motion can
be independently controlled. In their study on the limb position drift during repetitive
reaching, Brown, et al. [12] showed that the dynamics (joint torque pattern) can be
independently adapted to maintain the kinematics of motion.

Without any specially imposed instructions regarding the dynamics of motion (e.g., hit
the object with a certain amount of force or maintain the end—effector force vector during
reaching), it can be argue that the point-to-point arm reaching is first planned with respect to
the kinematic representation due to its primary function, locating the hand as desired. The
hierarchical control structure proposed by Brooks [3]supports the idea in a way that the
motion kinematics is planned in the highest level hierarchy in the sensorimotor system while
the motion dynamics is separately controlled by the middle and the lowest level hierarcies.
However, it seems that the motion kinematics is not the only factor that the CNS takes into
account. The dynamic representation is considered equally important in the motion planning
process. In his feedback error learning model, Kawato [13] explains that accurate feed
forward control commands in skillful motions are due to a well-trained internal model (i.e.,
inverse dynamics model) of the neuromuscular system.

In which Coordinate System the Motion Kinematics is Defined in the CNS?

In which coordinate system this motion kinematics is defined in our CNS, extrinsic
(e.g., Cartesian coordinates) or intrinsic (e.g., joint or muscle coordinates)? As stated by
Hogan [14], “One way to address this question is to look for patterns or regularities in motor
behavior”. According to the Bernstein’s hypothesis, the motion information formulated in
higher levels of the CNS has projections of extrinsic space rather than intrinsic joints and
muscles over lower levels of CNS activities [1].Morasso [15] supports the idea from his
observations on horizontal reaching experiments that the reaching pattern is relatively well
organized with respect to the hand motion in the task space due to the invariant movement
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features, straight hand path with a single peaked velocity, while no patterns or regularities
were observed in the joint space. Also, in his explanations on the consistent one peaked hand
velocity profile of the reaching, Brooks [3] mentioned that “This property is applied to the
path of the object of greatest attention of the central nervous system for intended multi-joint
movements”. Since arm reaching motions are brought mainly for a final hand manipulation or
a grasping task, the greatest attention of the CNS naturally occurs on the hand (i.e., end-
effector) paths. In addition, regarding the joint paths, Brooks [3] described that “They are not
necessarily continuous since they are fitted to support the intended hand path”.

On the other hands, Soechting and Lacquaniti [16, 17] report that invariant features of
movements can be observed in joint coordinates that the ratio of joint angular velocities
(elbow to shoulder) tends to be constant in the deceleration phase. After this finding,
Soechting and his colleagues [18-20] insist the shoulder-centered coordinate system based on
their observations on pointing experiments. In their earlier studies, they showed that
systematic errors of pointing arise from the transformation of perceived target position in
extrinsic coordinates into intrinsic coordinates, and these errors are centered at the shoulder
joint[18, 19]. In a later study, they argue that there exist both head-centered and shoulder-
centered coordinates to represent the target position in the CNS from experimental error
analysis results[20].

Multiple experimental studies found that the hand path curvature is depending on
movement directions (e.g., forward/backward, left/right or vertical) [21-23], and it seems that
joint coordinates can better explain such characteristics than task coordinates. In order to
explain such phenomenon, Klein Breteler et al. [24] proposed that the variance of hand path
curvatures can be explained more consistently with the motion planning in joint coordinates
than in task coordinates. In order to explain straight hand paths in joint coordinates,
Hollerbach et al. [25] proposed the strategy of “staggered joint interpolation™, which
approximates the straight hand path by scaling the amplitude and the duration of individual
joint angular velocity profile.

Set the Reaching Target
i Perceive the Current Configuration
' (@) Planning on Hand Path
Cdund paih geometyHaod speed profile)
(b) Inverse Kinematics
(A postiss] confignmation)

Figure 1. Schematic plot on overall procedures of the point-to-point reaching [26].

Against the hypothesis that the motion is planned in joint coordinates, Hogan [14] argues
that two observations are not explained with the joint coordinates hypothesis: 1) lack of
patterns or regularities of motion in the joint space, and 2) common experimental
observations that are against the joint coordinates hypothesis (especially the staggered joint
interpolation [25]). Even though there are up to date opinions that support the motion
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planning in joint coordinates (e.g., [4, 24, 27]), the hypothesis of the motion planning in hand
coordinates (or extrinsic task coordinates) is accepted in this study for neuronal evidences
observed from primate cortex activities along the hand motion [28-32]. Also, note that this
hypothesis is in accordance with the general path planning algorithm in the conventional
robotics control [33].

Human Sensorimotor System from the Control Engineering Viewpoint

Figure 2 represents a simplified control structure of the human sensorimotor system for a
point-to-point reaching from the control engineering viewpoint. In the figure, x4, indicates
the final task point, x,(7) is the desired hand trajectory in the task coordinates and 6,(t) refers
to the desired trajectory in the joint coordinates. @ (1) and a,(7) represent desired joint angular
velocity and acceleration, respectively. For its control command, ug(¢) and ug,(f) respectively
indicate the feed forward and the sensory feedback control commands while ug(f) is the
rapid feedback control command'. The total control command u(7) is equal to sum of all
control commands. For its sensory inputs, x,(f) and 6,(r) are the actual hand motion in the
visual sensory input and the actual joint motion in the proprioceptive input, respectively.
Motion errors, e,(t) and eg(r) are represented in the task coordinates and the joint coordinates,
respectively. d, is the exogenous disturbance input, &, is the measurement noise in the visual
input and & is the measurement noise in the proprioceptive input. According to the diagram,
the desired final task point x4, is determined in the highest (or conscious) level of the CNS
and is projected onto the hand path planning module (see Figure 2(a) which is also related to
Figure 1(a)). In this module, the desired hand trajectory x,(1) is planned as a function of time
t. In order to specify the actual control command in an internal body space (joint DOF is
considered in this paper), x4(1) is converted into the reference trajectory of intrinsic control
coordinates by the inverse kinematics module (see Figure 2(b) which is deeply related with
Figure 1(b)). Here, the joint trajectory 6,(r) is considered to represent the intrinsic motion
command for its relative simplicity compared to the muscle length or motor neuron activities.
Then the feed forward control command ug(t) is computed by the internal inverse dynamics
model (see Figure 2(c)) with the given desired joint kinematics. The actual hand motion x,(1)
and joint motion #,(f) generated from the controlled plant (i.e., human body dynamics, see
Figure 2(d)) are sensed by the vision and the proprioception, respectively. The motion errors,
e(1) and eg(r), which become inputs of the feedback loops, are computed from the desired
motion kinematics and the sensed motion output after respective time delay effects® (see
Figure 2(e) and Figure 2(f)). Due to the large delays, the magnitude of feedback gain matrix
(see Figure 2(g)) cannot be large to avoid the system instability [35]. For this reason, the feed
forward signal wuy(r) dominates the feedback signal uwug(7)especially for well-trained
movements. There are studies support the existence of the internal forward dynamics model
(see Figure 2(k)) that estimates the resulting sensory inputs from the efference copy of the
motor command u(?). In their review paper, Desmurget and Grafton [34] shows the possibility
and the evidence of a rapid feedback control enabled by the forward dynamics model. In this

'Desmurget and Grafton [34] proposed that the forward dynamics model with an efferent copy of motor command
signal can enable the CNS to control fast reaching movements by a feedback control.

* Approximate range of time delay for the visual feedback on xa(t) is 150~250 ms where the spinal feedback of the
proprioception on 0a(t) has shorter delay about 30~50 ms [35].
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study, however, we assume that such rapid feedback ug,(t) cannot be physically faster than
the ug(t), which is reasonable in the sense of control engineering.

The overall control structure shown in Figure 2 can be classified into two main processes,
motion planning process (see Figure 2(i)) and motion execution process (see Figure 2(j)), by
which motion characteristics is dominant, kinematics or dynamics. Note that it is assumed
that those two motion characteristics can be independently controlled in the CNS (e.g., the
study of Brown et al. [36]). Based on this independency, it is considered that motion planning
and actual execution processes are independently developed in the CNS, and the Figure 2
proposes that the point-to-point reaching is planned mostly in terms of motion kinematics
while the motion execution process handles plant dynamics to realize the planned motion.
Brooks [3] supports the idea with his hierarchical structure of the entire motion processes
based on physiological findings. According to his concept, reaching is planned in the highest
level hierarchy (i.e., motion planning process) and is executed in the middle and the lowest
levels (i.e., motion execution process). The idea is also supported by physiological,
neuroimaging and experimental evidence that the cerebellum in the middle level hierarchy
has a significant relationship with the formation of internal models (see Figure 2(c) for an
example) within the motion execution process [37-40].
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Figure 2. Simplified control structure of human sensorimotor system on point-to-point reaching.

It can be considered that the governing rules are implemented mostly in the motion
planning process rather than in the motion execution process for the following reasons:

1) Each module in the motion planning process (see Figure 2(a, b)) is directly linked to
the corresponding redundancy problem of motion generation (see Figure 1(a, b)), and

2) From the control engineering perspective shown in Figure 2, the governing rules can
keep their simplicity by being separated from the disturbances and uncertainties of
the controlled plant (e.g., time varying body dynamics, noise in neural signals and
changing actuator dynamics due to muscle fatigue).
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In reaching motions, the elbow joint governs the distance control of the hand, which can
be explained by the fact that the hand keeps a constant distance from the shoulder when the
elbow joint is locked. Therefore, the point-to-point reaching with the elbow joint constraint
may require a similar control process in the CNS as for the reaching on a frontal plane
without the joint restriction. The experimental setup in this study is also designed to let the
subjects focus on the hand directional control without effort on the hand distal control. In
other words, the imposed elbow constraint condition does not induce much of learning or
adaptation in the CNS. Recall that the feed forward control command dominates the feedback
signal for well-trained motions (i.e., the internal inverse dynamics model depicted in Figure
2(c) is already established and tuned enough accurate). Therefore, in order to observe the
governing rules implemented in the motion planning process, features induced by the desired
motion kinematics (i.e., desired joint angle 6,(7), joint angular velocity w,(f) and angular
acceleration a,(1)) and the feed forward control signal ug(r) should be extracted from the
captured motion kinematics x,(¢) and €,(1).

Literature Survey

In order to answer the Bernstein’s degree of freedom question [1], enormous studies have
been elaborated with various approaches. Campos and Calado [41] present a nice review on
computational models on human arm movement control. Based on their categorization,
selected computational models on the point-to-point reaching are reviewed in this section.

Descriptive Models

As human arm motions are generated in a highly stereotyped solution sets, some initial
studies tried to approximate such patterns based on empirical observations. Morasso [15]
found some consistent kinematic characteristics of the hand trajectories, such as straight paths
with bell-shaped velocity profiles, during the point-to-point reaching on the horizontal plane.

Another empirically found regularity of the hand speed profile has been confirmed from
the isogony principle in writing and drawing tasks: hand trajectory proceeds equal angles in
equal times [42]. Based on this finding, Lacquaniti et al. [43] formulated the two-third power
law that represents the instantaneous hand velocity as a power function of path curvature in
2D motions.

Fitt’s law is the well-known empirical relation between the movement time and the
relative difficulty of the reaching (or pointing), which can be quantified by the distance and
the dimension of the target [44]. In this law, the movement time for a reaching can be
estimated as a log-scale fitting model that is proportional to the index of difficulty based on
the information processing theory.

Minimum Principles

Beyond descriptions of empirical relations, later studies tried to extend the computational
model work to understand the underlying principles of the CNS. From consistent
experimental findings on the highly patterned kinematics of arm movements, it was
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considered that certain movements are preferably chosen by the CNS for satisfying some
efficiency criterion. Such selections are similar to a process of cost function minimization. In
this context, Engelbrecht [45] categorizes those efforts as minimum principles named after
the minimum theories in a variety of science and mathematics fields.

There are a number of researchers who focused on the kinematic aspect of the reaching.
From their experimental observations, Flash and Hogan [46]confirmed the Morasso’s finding
(i.e., a straight hand path and a bell-shaped hand speed profile) and approximated such hand
kinematics in 2D reaching with a mathematical model, the minimum jerk (MJ) model. This
MJ model stresses on the smoothness of natural human motions by minimizing the hand jerk
along the motion profile. The authors found that the hand kinematics follows similar rules for
the via-point reaching case (i.e., intermediate point passing or obstacle avoidance) as well by
observing low curvature hand paths joined with a high curvature path around the via-point.
Datas et al. [47] supported the same idea by comparing the minimum jerk hand paths with the
human experimental data of reaching on the horizontal and the vertical planes. From their
model on the 3D reaching motion, Klein Breteler and Meulenbroek [4] assumed that there is a
movement optimization scheme in the joint level which makes arm joint rotations in a
synchronized manner instead of independently controlling each joint DOF rotation. This
model derives full joint profiles by applying the MJ model in joint angular space.

The dynamic properties of arm reaching have been also considered to represent an aspect
of the governing rules. By considering the motion dynamics, following models derive their
solutions in intrinsic coordinates (e.g., joint or muscle). As a result, full motion outputs (e.g.,
hand trajectory, joint trajectory and torque) are produced simultaneously. Uno et al. [21]
proposed the minimum torque change (MTC) model that minimizes the sum of squaredrate of
change of joint torque over time, and compared with the MJ model on various 2D reaching
motions. For the point-to-point reaching without a via-point constraint, the MTC model could
mimic slightly curved hand paths with smooth speed profiles while the MJ always generated
straight paths. Later, the MTC model was corrected as the minimum commanded torque
change(MCTC) model by Nakano et al. [48]. Dornay et al. [49] introduced the minimum
muscle-tension change (MMTC) model to interpret the indeterminacy problem (i.e.,
redundant mapping problems introduced in Figure 1) in a deeper intrinsic level (i.e., skeletal
muscle coordinates) than the MTC model.

Biess et al. [SO]introduced a unique computational model of 3D arm reaching. Unlike
other optimization models, they obtain an analytic solution of the cost function minimization
based on the assumption that optimization principles are separately applied at the geometric
and temporal levels of control. In their model, geometric properties (i.e., hand path and
posture) are specified by the joint trajectories derived from geodesic curves in the
Riemannian configuration space with respect to the kinetic energy metric. Once geometric
properties are derived, the temporal property (i.e., speed of the movement) is determined by
another independent optimization process that minimizes the squared third time derivative of
the selected hand path’s arc length.

Some research groups have focused on the resolution of the arm posture configuration
problem (see Figure 1(b)). Kang et al. [51] considered mechanical work minimization. Kim et
al. [52] introduced an interesting concept of effective feeding potential by maximizing a
projection of the largest major axis of manipulability ellipsoid on a vector connecting hand and
mouth positions. Kashi et al. [53] adopted a multi criteria cost function to minimize angular
joint displacement and shoulder joint range availability. In order to determine the upper body



