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Preface

Among the various ingredients of structural dynamics, damping is one of the least
understood topics. The main reason is that unlike the stiffness and inertia forces,
damping forces cannot always be obtained from “first principles”. The past two
decades have seen significant developments in the modeling and analysis of damping
in the context of engineering dynamic systems. Developments in composite materials
including nanocomposites and their applications in advanced structures, such as new
generation of aircrafts and large wind turbines, have led to the need for understanding
damping in a better manner. Additionally, the rise of vibration energy harvesting
technology using piezoelectric and electromagnetic principles further enhanced the
importance of looking at damping more rigorously. The aim of this book is to
systematically present the latest developments in the modeling and analysis of
damping in the context of general linear dynamic systems with multiple
degrees-of-freedom. The focus has been on the mathematical and computational
aspects. This book will be relevant to aerospace, mechanical and civil engineering
disciplines and various sub-disciplines within them. The intended readers of this
book include senior undergraduate students and graduate students doing projects or
doctoral research in the field of damped vibration. Researchers, professors and
practicing engineers working in the field of advanced vibration will find this book
useful. This book will also be useful for researchers working in the fields of
aeroelasticity and hydroelasticity, where complex eigenvalue problems routinely
arise due to fluid—structure interactions.

There are some excellent books which already exist in the field of damped
vibration. The book by Nashif er al. [NAS 85] covers various material damping
models and their applications in the design and analysis of dynamic systems. A
valuable reference on dynamic analysis of damped structures is [SUN 95]. The book
by Beards [BEA 96] takes a pedagogical approach toward structural vibration of
damped systems. The handbook by Jones [JON 01] focuses on viscoelastic damping
and analysis of structures with such damping models. These books represented the
state of the art at the time of their publications. Since these publications, significant
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research works have gone into the dynamics of damped systems. The aim of this
book is to cover some of these latest developments. The attention is mainly limited to
theoretical and computational aspects, although some references to experimental
works are given.

One of the key features of this book is the consideration of general non-viscous
damping and how such general models can be seamlessly integrated into the
framework of conventional structural dynamic analysis. New results are illustrated by
numerical examples and, wherever possible, connections are made to well-known
concepts of viscously damped systems. The related title, Structural Dynamic
Analysis with Generalized Damping Models:  Identification [ADH 14b], is
complementary to this book, and, indeed, they could have been presented together.
However, for practical reasons, it has proved more convenient to present the material
separately. There are ten chapters and one appendix in the two books combined
covering analysis and identification of dynamic systems with viscous and
non-viscous damping.

This current book, Structural Dynamic Analysis with Generalized Damping
Models: Analysis, deals with the analysis of linear systems with general damping
models. Chapter 1 gives an introduction to the various damping models. Dynamics of
viscously damped systems are discussed in Chapter 2. Chapter 3 considers dynamics
of non-viscously damped single-degree-of-freedom systems in detail. Chapter 4
discusses non-viscously damped multiple degree-of-freedom systems. Linear
systems with general non-viscous damping are studied in Chapter 5. Chapter 6
proposes reduced computational methods for damped systems. A method to deal
with general asymmetric systems is described in the appendix.

The related book Structural Dynamic Analysis with Generalized Damping Models:
Identification [ADH 14b] deals with the identification and quantification of damping.
Chapter 1 describes parametric sensitivity of damped systems. Chapter 2 describes
the problem of identification of viscous damping. The identification of non-viscous

damping is detailed in Chapter 3. Chapter 4 gives some tools for the quantification of
damping.

This book is the result of the last 15 years of research and teaching in the area of
damped vibration problems. Initial chapters started taking shape when I offered a
course on advanced vibration at the University of Bristol. The later chapters
originated from the research works with numerous colleagues, students, collaborators
and mentors. I am deeply indebted to all of them for numerous stimulating scientific
discussions, exchanges of ideas and, on many occasions, direct contributions toward
the intellectual content of the book. I am grateful to my teachers Professor C. S.
Manohar (Indian Institute of Science, Bangalore), Professor R. S. Langley
(University of Cambridge) and. in particular, Professor J. Woodhouse (University of
Cambridge), who was heavily involved with the works reported in Chapters 2—4 of
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[ADH 14b]. I am very thankful to my colleague Professor M. 1. Friswell with whom [
have a long-standing collaboration. Some joint works are directly related to the
content of this book (Chapter 1 of [ADH 14b] in particular). I would also like to
thank Professor D. J. Inman (University of Michigan) for various scientific
discussions during his visits to Swansea. I am thankful to Professor A. Sarkar
(Carleton University) and his doctoral student M. Khalil for joint research works. I
am deeply grateful to Dr A. S. Phani (University of British Columbia) for various
discussions related to damping identification and contributions toward Chapters 2
and 5 of this book and Chapter 2 of [ADH 14b]. Particular thanks go to Dr N.
Wagner (Intes GmbH, Stuttgart) for joint works on non-viscously damped systems
and contributions in Chapter 4 of this book. I am also grateful to Professor F. Papai
for involving me in research works on damping identification. My former PhD
students B. Pascual (contributed in Chapter 6), J. L. du Bois and F. A. Diaz De la O
deserve particular thanks for various contributions throughout their time with me and
putting up with my busy schedules. I am grateful to Dr Y. Lei (University of Defense
Technology, Changsha) for carrying out joint research with me on non-viscously
damped continuous systems. | am grateful to Professor A. W. Lees (Swansea
University), Professor N. Lieven, Professor F. Scarpa (University of Bristol),
Professor D. J. Wagg (University of Sheffield), Professor S. Narayanan (Indian
Institute of Technology (IIT) Madras), Professor G. Litak (Lublin University), E.
Jacquelin (Université Lyon), Dr A. Palmeri (Loughborough University), Professor S.
Bhattacharya (University of Surrey), Dr S. E. Ali (IIT Madras), Dr R. Chowdhury
(IIT Roorkee), Dr P. Duffour (University College London), and Dr P. Higino, Dr G.
Caprio and Dr A. Prado (Embraer Aircraft) for their intellectual contributions and
discussions at different times. Besides the names mentioned here, I am also thankful
to many colleagues, fellow researchers and students working in this field of research
around the world, whose names cannot be listed here due to page limitations. The
lack of explicit mentions by no means implies that their contributions are any lesser.
The opinions presented in the book are entirely mine, and none of my colleagues,
students, collaborators and mentors have any responsibility for any shortcomings.

I have been fortunate to receive grants from various companies, charities and
government organizations including an Advanced Research Fellowship from UK
Engineering and Physical Sciences Research Council (EPSRC), the Wolfson
Research Merit Award from the Royal Society and the Philip Leverhulme Prize from
the Leverhulme Trust. Without these findings, it would have been impossible to have
conducted the works leading to this book. Finally, I want to thank my colleagues at
the College of Engineering at Swansea University. Their support proved to be a key
factor in materializing the idea of writing this book.

Last, but by no means least, I wish to thank my wife Sonia and my parents for their
constant support, encouragement and putting up with my ever-increasing long periods
of “non-engagement” with them.

Sondipon ADHIKARI
October 2013



Nomenclature

C} j diagonal element of the modal damping matrix

ozi] ) terms in the expansion of approximate complex modes

a1, proportional damping constants

o coefficients in Caughey series, j = 0,1,2,---

0, a vector of j zeros

A state-space system matrix

a; a coefficient vector for the expansion of jth complex mode
« a vector containing the constants in Caughey series

h(iw) frequency response function of an SDOF system

B state-space system matrix

b, a vector for the expansion of jth complex mode

f(s) forcing vector in the Laplace domain

f (s) modal forcing function in the Laplace domain

p(s) effective forcing vector in the Laplace domain

als) response vector in the Laplace domain

a(s) Laplace transform of the state-vector of the first-order system
v(s) modal coordinates in the Laplace domain

Vi Laplace transform of the internal variable y, (t)

Rt positive real line

C viscous damping matrix

(o4 modal damping matrix

Co viscous damping matrix (with a non-viscous model)

Cp coefficient matrices in the exponential model for & = 0, ..., n, where n

is the number of kernels
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G(t) non-viscous damping function matrix in the time domain

AK error in the stiffness matrix

AM error in the mass matrix

B non-viscous damping factor

Be critical value of 3 for oscillatory motion, 3. = 3—\1/—3

Si(e) proportional damping functions (of a matrix)

Br(s) coefficients in the state-space modal expansion

B the value of 3 above which the frequency response function always has
a maximum

F linear matrix pencil with time step in state-space, F = B — %A

Fi.Fs linear matrix pencils with time step in the configuration space

F; regular linear matrix pencil for the jth mode

f'(t) forcing function in the modal coordinates

f(t) forcing function

G(s) non-viscous damping function matrix in the Laplace domain

Gy the matrix G(s) ats — 0

G the matrix G(s) at s — o

H(s) frequency response function matrix

u; real part of z;

v, imaginary part of z;

Z; jth measured complex mode

| identity matrix

K stiffness matrix

M mass matrix

0, a null matrix of dimension i x j

Q diagonal matrix containing the natural frequencies

p parameter vector (in [ADH 14b], Chapter 1)

P; a diagonal matrix for the expansion of jth complex mode

P; eigenvectors in the state-space

P left eigenvectors in the state-space

q(t) displacement response in the time domain

qg vector of initial displacements

Q; an off-diagonal matrix for the expansion of jth complex mode

r(t) forcing function in the state-space

Ry rectangular transformation matrices (in Chapter 4)
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R} residue matrix associated with pole sy

S a diagonal matrix containing eigenvalues s
a temporary matrix, T = VM~ 'K ([ADH 14b], Chapter 2)

Ty Moore-Penrose generalized inverse of Ry,

T a transformation matrix for the optimal normalization of the kth
complex mode

(C] normalization matrix

u(t) the state-vector of the first-order system

ug vector of initial conditions in the state-space

u; displacement at the time step j

v(t) velocity vector v(t) = q(t)

\& a vector of the j-modal derivative in Nelson’s methods (in [ADH 14b],
Chapter 1)

V; velocity at the time step j

€j error vector associated with jth complex mode

pi(s) eigenvectors of the dynamic stiffness matrix

W coefficient matrix associated with the constants in Caughey series

X matrix containing the undamped normal modes X;

Xy undamped eigenvectors, j = 1,2,-- N

y(t) modal coordinate vector (in Chapter 2)

yi(t) vector of internal variables, k = 1,2, n

Yi. internal variable y,. at the time step j

Z matrix containing the complex eigenvectors z;

zZ; complex eigenvectors in the configuration space

¢ diagonal matrix containing the modal damping factors

¢, a vector containing the modal damping factors

X merit function of a complex mode for optimal normalization

XR: XI merit functions for real and imaginary parts of a complex mode

A perturbation in the real eigenvalues

) perturbation in complex conjugate eigenvalues

do initial velocity (SDOF systems)

€ small error

] ratio between the real and imaginary parts of a complex mode

dissipation function

Y non-dimensional characteristic time constant
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complex mode normalization constant

weights for the normalization of the real and imaginary parts of a
complex mode

frequency-dependent estimated characteristic time constant
estimated characteristic time constant for jth mode
an arbitrary independent time variable

real part of the complex optimal normalization constant for the jth
mode

complex eigenvalue corresponding to the oscillating mode (in
Chapter 3)

complex frequencies MDOF systems

moment of the damping function

dissipation energy

non-viscous damping kernel function in an SDOF system
kinetic energy

potential energy

relaxation parameter

relaxation parameters associated with coefficient matrix Cj; in the
exponential non-viscous damping model

real eigenvalue corresponding to the overdamped mode
eigenvalues of the dynamic stiffness matrix

driving frequency

damped natural frequency of SDOF systems

undamped natural frequencies of MDOF systems, j = 1,2,-- - N
undamped natural frequency of SDOF systems

frequency corresponding to the maximum amplitude of the response
function

damped natural frequency of MDOF systems

mass density

unit imaginary number, i = /—1

dummy time variable

characteristic time constant for jth non-viscous model
forcing function in the modal domain

normalized frequency w/w,

imaginary part of the complex optimal normalization constant for the
jth mode
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Nomenclature  xvii

phase angle of the response of SDOF systems
phase angle of the modal response

a trail complex eigenvector (in Chapter 2)
asymmetric state-space system matrix

fitted damping matrix

fitted generalized proportional damping function (in [ADH 14b],
Chapter 2)

state-space system matrix for rank-deficient systems
state-space system matrix for rank-deficient systems

integration of the forcing function in the state-space for rank-deficient
systems

integration of the forcing function in the state-space

matrix containing the state-space eigenvectors for rank-deficient
systems

eigenvectors in the state-space for rank-deficient systems

forcing function in the state-space for rank-deficient systems

the state vector for rank-deficient systems

vector of internal variables for rank-deficient systems, k = 1,2,---n
internal variable y, at the time step j for rank-deficient systems

jth eigenvector corresponding to the kth the internal variable for rank-
deficient systems

a function of ¢ defined in equation [3.132]

viscous damping factor

critical value of ¢ for oscillatory motion, (. = %\/3
modal damping factors

lower critical damping factor

equivalent viscous damping factor

upper critical damping factor

the value of ¢ below which the frequency response function always has
a maximum

non-viscous damping parameters in the exponential model
response amplitude of SDOF systems

modal response amplitude

viscous damping constant of an SDOF system

coefficients of exponential damping in an SDOF system
critical damping factor
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d;

E
7
fa(t)
G(iw)
G(s)

T,
j-‘ﬂ LM

varrho,

a constant of the j-modal derivative in Nelson’s methods
Young's modulus

forcing function (SDOF systems)

non-viscous damping force

non-dimensional frequency response function

non-viscous damping kernel function in the Laplace domain (SDOF
systems)

scalar damping functions, i = 1,2, - -

constant time step

impulse response function of SDOF systems

impulse response function

non-proportionally indices, k1 = 1,2, 3,4

spring stiffness of an SDOF system

length of the rod

length of an element

dimension of the state-space for non-viscously damped MDOF systems
mass of an SDOF system

number of degrees of freedom

number of exponential kernels

number of divisions in the time axis

any element in the parameter vector p (in [ADH 14b], Chapter 1)
displacement in the time domain

initial displacement (SDOF systems)

non-conservative forces

Rayleigh quotient for a trail vector x

three new Rayleigh quotients

normalized eigenvalues of non-viscously damped SDOF systems (in
Chapter 3)

rank of C. matrices

Laplace domain parameter

eigenvalues of dynamic systems

time

natural time period of an undamped SDOF system
minimum time period for the system

complex optimal normalization constant for the jth mode



—_
L ]
~N o *

—
L]

|
i

—
°

|
~

—_
®

—_
L]

3

—_
L]

-
=

= 2 & o .
X

5o
3O
0

det(e)

diag [e]

(o)

Nomenclature

normalized frequency-squared, r = w*/w? (in Chapter 3)
modal coordinates (in Chapter 2)
forcing function in the Laplace domain
displacement in the Laplace domain
matrix containing Q;

matrix containing v

matrix containing the eigenvectors ¢,
vector of initial velocities

non-viscous proportional damping functions (of a matrix)
a matrix of internal eigenvectors

jth eigenvector corresponding to the kth the internal variable
power spectral density

a vector of zeros

Lagrangian (in Chapter 3)

Dirac-delta function

Kroneker-delta function

gamma function

Lagrange multiplier (in Chapter 3)
complex conjugate of (e)

matrix transpose

matrix inverse

matrix inverse transpose

Hermitian transpose of (e)

elastic modes

non-viscous modes

derivative with respect to time

space of complex numbers

space of real numbers

orthogonal to

Laplace transform operator

inverse Laplace transform operator
determinant of (e)

a diagonal matrix

for all

imaginary part of (e)

Xix
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€ belongs to

¢ does not belong to

® Kronecker product

(o) Laplace transform of ()

R(e) real part of (e)

vec vector operation of a matrix

O(e) in the order of

ADF anelastic displacement field model
adj(e) adjoint matrix of (e)

GHM Golla, Hughes and McTavish model
MDOF multiple-degree-of-freedom

SDOF single-degree-of-freedom
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