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Preface

The purpose of this book is to present a version of multivariate statistical
theory in which vector space and invariance methods replace, t2 a large
extent, more traditional muliivariate methods. The book is a text. Over the
past ten years, various versions have been used for graduate multivariate
courses at the University of Chicago, the University of Copenhagen, and the
University of Minnesota. Designed for a one year lecture course or for
independent study, the book contains a full complement of problems and
problem solutions.

My interesi in using vector space methods in multivariate analysis was
aroused by William Kruskal’s success with such methods in univariate linear
model theory. In the late 1960s, I had the privilege of teaching from
Kruskal’s lecture notes where a coordinate free (vector space) approach to
univariate analysis of variance was developed. (Unfortunately, Kruskal’s
notes have not been published.) This approach provided an elegant unifica-
tion of linear model theory together with many useful geometric insights. In
addition, I found the pedagogical advantages of the approach far out-
weighed the extra effort needed to develop the vector space machinery.
Extending the vector space approach to multivariate situations became a
goal, which is realized here. Basic material on vector spaces, random vectors,
the normal distribution, and linear models take up most of the first half of
this book. -

Invariance (group theoretic) arguments have long been an important
research tool in multivariate analysis as well as in other areas of statistics. In
fact, invariance considerations shed light on most multivariate hypothesis
testing, estimation, and distribution theory problems. When coupled with
vector space methods, invariance provides an important complement to the
traditional distribution theory-likelihood approach to multivariate analysis.
Applications of invariance to multivariate problems occur throughout the
second half of this book. '
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viii PREFACE

, A brief summary of the contents and flavor of the ten chapters herein’
follows. In Chapter 1, the elements of vector space theory are presented.
Since my approach to the subject is geometric rather than algebraic, there is
an emphasis on inner product spaces where the notions of length, angle, and
orthogonal projection make sense. Geometric topics of particular impor-
tance in multivariate analysis include singular value decompositions and
angles between subspaces. Random vectors taking values in inner product
spaces is the general topic of Chapter 2. Here, induced distributions, means,
covariances, and independence are introduced in the inner product space
setting. These results are then used to establish many traditional properties
of the multivariate normal distribution in Chapter 3. In Chapter 4, a theory
of linear models is given that applies directly to multivariate problems. This
development, suggested by Kruskal’s treatment of univariate linear models,
contains results that identify all the linear models to which the
Gauss—Markov Theorem applies.

Chapter 5 contains some standard matrix factorizations and some ele-
mentary Jacobians that are used in later chapters. In Chapter 6, the theory
of invariant integrals (measures) is outlined. The many examples here were
chosen to illustrate the theory and prepare the reader for the statistical
applications to follow. A host of statistical applications of invariance,
ranging from the invariance of likelihood methods to the use of invariance
in deriving distributions and establishing independence, are given in Chapter
7. Invariance arguments are used throughout the remainder of the book.

The last three chapters are devoted to a discussion of some traditional
and not so traditional problems in multivariate analysis. Here, I have
stressed the connections between classical likelihood methods, linear model
considerations, and invariance arguments. In Chapter 8, the Wishart distri-
bution is defined via its representation in terms of normal random vectors.
This representation, rather than the form of the Wishart density, is used to
derive properties of the Wishart distribution. Chaptér 9 begins with a
thorough discussion of the multivariate analysis of variance (MANOVA)
model. Variations on the MANOVA model including multivariate linear
models with structured covariances are the main topic of the rest of Chapter
9. An invariance argument that leads to the relationship between canonical
correlations and angles between subspaces is the lead topic in Chapter 10.
After a discussion of some distribution theory, the chapter closes with the
connection between testing for independence and testing in multivariate
regression models.

Throughout the book, I have assumed that the reader is familiar with the
basic ideas of matrix and vector algebra in coordinate spaces and has some
knowledge of measure and integration theory. As for statistical prere-
quisites, a solid first year graduate course in mathematical statistics should
suffice. The book is probably best read and used as it was written—from
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front to back. However, I have taught short (one quarter) courses on topics
~in MANOVA using the material in Chapters 1, 2, 3, 4, 8, and 9 as a basis.

It is very difficult to compare this text with others on multivariate
analysis. Although there may be a moderate amount of overlap with other
texts, the approach here is sufficiently different to make a direct comparison
inappropriate. Upon reflection, my attraction to vector space and invariance
methods was, I think, motivated by a desire for a more complete under-
standing of multivariate statistical models and techniques. Over the years, I
have found vector space ideas and invariance arguments have served me
well in this regard. There are many multivariate topics not even mentioned
here. These include discrimination and classification, factor analysis,
Bayesian multivariate analysis, asymptotic results and decision theory re-
sults. Discussions of these topics can be found in one or more of the books
listed in the Bibliography.

As multivariate analysis is a relatively old subject within statistics, a
bibliography of the subject is very large. For example, the entries in 4
Bibliography of Multivariate Analysis by T. W. Anderson, S. Das Gupta, and
G. H. P. Styan, published in 1972, number over 6000. The condensed
bibliography here contains a few of the important early papers plus a
sample of some recent work that reflects my bias. A more balanced view of
the subject as a whole can be obtained by perusing the bibliographies of the
multivariate texts listed in the Bibliography.

My special thanks go to the staff of the Institute of Mathematical
Statistics at the University of Copenhagen for support and encouragement.
It was at their invitation that I spent the 1971-1972 academic year at the
University of Copenhagen lecturing on multivariate analysis. These lectures
led to Multivariate Statistical Analysis, which contains some of the ideas and
the flavor of this book. Much of the work herein was completed during a
second visit to Copenhagen in 1977-1978. Portions of the work have been
supported by the National Science Foundation and the University of
Minnesota. This generous support is gratefully acknowledged.

A number of people have read different versions of my manuscript and
have made a host of constructive suggestions. Particular thanks go to
Michael Meyer, whose good sense of pedagogy led to major revisions in a
number of places. Others whose help I would like to-acknowledge are
Murray Clayton, Siu Chuen Ho, and Takeaki Kariya.

Most of the typing of the manuscript was done by Hanne Hansen. Her
efforts are very much appreciated. For their typing of various corrections,
addenda, changes, and so on, I would like to thank Melinda Hutson,
Catherine Stepnes, and Victoria Wagner.

Mornris L. EATON
Minneapolis, Minnesota
May 1983



Notation

an inner product space, vector space V and inner product
( Tyt ) '

the vector space of linear transformations on V to W

the group of nonsingular linear transformations on ¥V to V'
the orthogonal group of the inner product space (V, (-, -))

Euclidean coordinate space of all n-dimensional column vek-
tors

the linear space of all n X p real matrices
the group of n X n nonsingular matrices
the group of n X n orthogonal matrices

the space of n X p real matrices whose p columns form an
orthonormal set in R”

the group of lower triangular matrices with positive diagonal
elements—dimension implied by countext

the group of upper triangular matrices with positive diagonal
elements—dimension implied by context

the set of p X p real symmetric positive definite matrices

the matrix or linear transformation A4 is positive definite

A is positive semidefinite (non-negative definite)

determinant

trace

the outer product of the vectors x and y

the Kronecker product of the linear transformations 4 and B
the right-hand modulus of a locally compact topological group
the distributional law of “-”

the normal distribution with mean u and covariance 2 on an
inner product space

the Wishart distribution with n degrees of freedom and p x P
parameter matrix =



Contents

Notation
1. Vector Space Theory 1

1.1. ' Vector Spaces, 2
1.2. Linear Transformations, 6
1.3. Inner Product Spaces, 13
1.4. The Cauchy—Schwarz Inequality, 25
1.5. The Space E(V, W), 29
1.6. Determinants and Eigenvalues, 38
1.7. The Spectral Theorem, 49
Problems, 63
Notes and References, 69

2. Random Vectors 70

2.1. Random Vectors, 70
2.2. Independence of Random Vectors, 76
2.3. Special Covariance Structures, 81
Problems, 98
Notes and References, 102

3. The Normal Distribution on a Vector Space 105

3.1. The Normal Distribution, 104
3.2. Quadratic Forms, 109
3.3. Independence of Quadratic Forms, 113

xi



xii

CONTENTS

3.4. Conditional Distributions, 116

3.5. The Density of the Normal Distribution, 120
Problems, 127
Notes and References, 131

Linear Statistical Models

4.1. The Classical Linear Model, 132

‘4.2. More About the Gauss—Markov Theorem, 140
4.3. Generalized Linear Models, 146

Problems, 154

Notes and References, 157

Matrix Factorizations and Jacobians

5.1. Matrix Factorizations, 159
5.2. Jacobians, 166

Problems, 180

Notes and References, 183

Topological Groups and Invariant Measures

6.1. Groups, 185

6.2. Invariant Measures and Integrals, 194

6.3. Invariant Measures on Quotient Spaces, 207

6.4. Transformations and Factorizations of Measures, 218
Problems, 228
Notes and References, 232

First Applications of Invariance

7.1. Left O, Invariant Distributions on n X p Matrices, 233
7.2. Groups Acting on Sets, 241
7.3. Invariant Probability Models, 251
7.4. The Invariance of Likelihood Methods, 258
7.5. Distribution Theory and Invariance, 267
7.6. Independence and Invariance, 284
Problems, 296
Notes and References, 299

132

159

184

233



CONTENTS xiii
8. The Wishart Distribution 302

8.1. Basic Properties, 302

8.2. Partitioning a Wishart Matrix, 309

8.3. The Noncentral Wishart Distribution, 316

8.4. Distributions Related to Likelihood Ratio Tests, 318
Problems, 329
Notes and References, 332

9. Inference for Means in Multivariate Linear Models 334

9.1. The MANOVA Model, 336
9.2. MANOVA Problems with Block Diagonal
Covariance Structure, 350

9.3. Intraclass Covariance Structure, 355

9.4. Symmetry Models: An Example, 361

9.5. Complex Covariance Structures, 370

9.6. Additional Examples of Linear Models, 381
Problems, 397
Notes and References, 401

18. Canonical Correlation Coefficients 403

10.1. Population Canonical Correlation Coefficients, 403
10.2. Sample Canonical Correlations, 419

10.3. Some Distribution Theory, 427

10.4. Testing for Independence, 443

10.5. Multivariate Regression, 451

Problems, 456

Notes and References, 463

Appendix 465
Comments on Selected Problems 471
Bibliography 503

Index , : 507



CHAPTER

Vector Space Theory

In order to understand the structure and geometry of multivariate distribu-
tions and associated statistical problems, it is essential that we be able to
distinguish those aspects of multivariate distributions that can be described
without reference to a coordinate system and those that cannot. Finite
dimensional vector space theory provides us with a framework in which it
becomes relatively easy to distinguish between coordinate free and coordi-
nate concepts. It is fair to say that the material presented in this chapter
furnishes the language we use in the rest of this book to describe many of
the geometric (coordinate free) and coordinate properties of multivariate
probability models. The treatment of vector spaces here is far {from com-
plete, but those aspects of the theory that arise in later chapters are covered.
Halmos (1958) has been followed quite closely in the first two sections of
this chapter, and because of space limitations, proofs sometimes read “
Halmos (1958).” ~

The material in this chapter runs from the elementary notions of basis,
dimension, linear transformation, and matrix to inner product space, or-
thogonal projection, and the spectral theorem for self-adjoint linear trans-
formations. In particular, the linear- space of linear transformations is
studied in detail, and the chapter ends with a discussion of what is
commonly known as the singular value decomposition theorem. Most of the
vector spaces here are finite dimensional real vector spaces, although
excursions into infinite dimensions occur via applications of the
Cauchy-Schwarz Inequality. As might be expected, we introduce complex
coordinate spaces in the discussion of determinants and eigenvalues.

Multilinear algebra and tensors are not covered systematically, although
the outer product of vectors and the Kronecker product of linear transfor-
mations are covered. It was felt that the simplifications” and generality
obtained by introducing tensors were not worth the price in terms of added
notation, vocabulary, and abstractness.



2 VECTOR SPACE THEORY
1.i. VECTOR SPACES

Let R denote the set of real numbers. Elements of R, called scalars, are
denoted by a, 83,. .. .

Definition 1.1. A set ¥V, whose elements are called vectors, is called a real
vector space 1f:

(I) to each pair of vectors x, y € V, there is a vector x + y € V, called the
sum of x and y, and for all vectors in V,

1 x+y=y+x
() (x+y)+z=x+(y + 2).
(1ii) There exists a unique vector 0 € V such that x + 0 = x for all x.

(iv) For each x € V, there is a unique vector — x such that x + (—x)
= 0. '

_(II) For each « € R and x € V, there is a vector denoted by ax € V, called
the product of @ and x, and for all scalars and vectors,

(1) a(Bx) = (aB)x.

Gy Ix'=x
(i) (a+ B)x = ax + Bx.
(iv) a(x +y)=ax + ay.

In IIiii), (@ + B)x means the sum of the two scalars, @ and B, times x,
while ax + Bx means the sum of the two vectors, ax and Sx. This multiple
use of the plus sign should not cause any confusion. The reason for calling
V a real vector space is that multiplication of vectors by real numbers is
permitied.

A classical e€xample of a real vector space is the set R” of all ordered
n-tuples of real numbers. An element of R”, say x, is represented as

X
X2

x = . s X ER;, t=1, 5

Xn

and x; is called the ith coordinate of x. The vector x + y has ith coordinate
x; + y,and ax, « € R, is the vector with coordinates ax;, i = 1,:.., n. With
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0 € R" representing the vector of all zeroes, it is routine to check that R" is
a real vector space. Vectors in the coordinate space R" are always repre-
sented by a column of » real numbers as indicated above. For typographical
convenience, a vector is often written as a row and appears as x’ = (x,,...,
x, ). The prime denotes the transpose of the vector x € R".

The following example provides a method of constructing real vector
spaces and yields the space R” as a special case.

¢ FExample 1.LI. Let %X be a set. The set V is the collection of all the
real-valued functions defined on ®X. For any two elements x,, x, €
_V, define x, + x, as the function on X whose value at ¢ is
x,(1) + x,(2). Also, if @« € R and x € V, ax is the function on X
given by (ax)(t) = ax(t). The symbol 0 € V is the zero function. It
is easy to verify that V is a real vector space with these definitions
of addition and scalar multiplication. When X = (1, 2,..., n}, then
V is just the real vector space R" and x € R" has as its ith
coordinate the value of x at i € %. Every vector space discussed in
the sequel is either ¥ (for some set X) or a linear subspace (to be
defined in a moment) of some V. ¢

Before defining the dimension of a vector space, we need to discuss linear
dependence and independence. The treatment here follows Halmos (1958,
Sections 5-9). Let ¥ be a real vector space.

Definition 1.2. A finite set of vectors {x;|i = 1,..., k) is linearly dependent
if there exist real numbers aj,..., a,, not all zero, such that La;x, = 0.
Otherwise, {x,]i = 1,..., k) is linearly independent.

A brief word about summation notation. Ordinarily, we do not indicate
indices of summation on a summation sign when the range of summation is
clear from the context. For example, in Definition 1.2, the index i was
specified to range between 1 and k& before the summation on i appeared;
hence, no range was indicated on the summation sign.

An arbitrary subset § C ¥V is linearly independent if every finite subset of
S is linearly independent. Otherwise, S is linearly dependent. )

Definition 1.3. A basis for a vector space ¥V is a linearly independent set §
such that every vector in V is a linear combination of elements of S. V is
finite dimensional if it has a finite set § that is a basis.

¢ Example1.2. Take V= R"andlete! = (0,...,0,1,0,..., 0) where
the one occurs as the ith coordinate of ¢, i = 1,..., n. For x € R",
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it is clear that x = Lx,¢;, where x; is the ith coordinate of x. Thus

every vector in R” is a linear combination of g, .. ., ¢,. To show that
{gi = 1,..., n}is a linearly independent set, suppose La;¢, = 0 for
some scalars a;, i = 1,..., n. Then x = La;e; = 0 has e, as its ith
coordinate, so a; = 0, i = 1,..., n. Thus {g,li = 1,..., n}) is a basis
for R" and R” is finite dimensional. The basis {¢;ji = 1,..., n} is
called the standard basis for R". ®

Let ¥ be a finite dimensional real vector space. The basic properties of
linearly independent sets and bases are:

(i) If {x,,...,x,,) is a linearly independent set in V| then there exist
VECLOTS X,y - - - s Xpmsy SUch that {x,,..., x,, ) is a basis for V.
(ii) All bases for V have the same number of elements. The dimension
of V is defined to be the number of elements in any basis.
(iii) Every set of n + 1 vectors in an n-dimensional vector space is
linearly dependent.

Proofs of the above assertions can be found in Halmos (1958, Sections 5-8).
The dimension of a finite dimensional vector space is denoted by dim(V). If
{xy,..., x,) is a basis for V, then every x € V is a unique linear combina-

tion of (x,,..., x,}—say x = La,x,. That every x can be so expressed
follows from the definition of a basis and the uniqueness follows from the
linear independence of {x,,..., x,}. The numbers «a,,..., a, are called the

coordinates of x in the basis {x,,..., x,). Clearly, the coordinates of x
depend on the order in which we write the basis. Thus by a basis we always
mean an ordered basis.

We now introduce the notion of a subspace of a vector space.

Definition 1.4. A nqﬁgmpty subset M C V is a subspace (or linear mani-
fold) of V if, foreach x, y€ M and a, B €E R, ax + By € M.

A subspace M of a real vector space V is easily shown to satisfy the
vector space axioms (with addition and scalar multiplication inherited from
V'), so subspaces are real vector spaces. It is not difficult to verify the
following assertions (Halmos, 1958, Sections 10-12):

(i) The intersection of subspaces is a subspace.
(i) If M is a subspace of a finite dimensional vector space V, then
dim(M) < dim(V).
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(iii) Given an m-dimensional subspace M of an n-dimensional vector
space V, there is a basis {(x,,..., x,,..., x,} for V such that
{x1,..., X,,} is a basis for M.

Given any set S C ¥, span(S) is defined to be the intersection of all the
subspaces that contain S—that is, span(S) is the smallest subspace that
contains S. It is routine to show that span(S) is equal to the set of all linear
combinations of elements of S. The subspace span(S) is often called the
subspace spanned by the set S.

If M and N are subspaces of V, then span(M U N) is the set of all
vectors of the form x + y where x € M and y € N. The suggestive notation
M+ N={zlz=x+y,x € M, y € N} is used for span(M U N) when M
and N are subspaces. Using the fact that a linearly independent set can be
extended to a basis in a finite dimensional vector space, we have the
following. Let ¥ be finite dimensional and suppose M and N are subspaces
of V.

(i) Letm = dim(M), n = dim(N), and k = dim(M N N). Then there
€XiSt VeCtOTS Xj,..., Xz, Vis1s--+s Vo @0d 2y, y,..., 2, such that
{X5..-, %) is a basis for M NN, {x,,..., Xp Yis1s-+-sVm) 1S 2
basis for M, {x,,..., Xy Zx415-- s Z,) is a basis for N, and {x,,...,
Xis Yiatse-+s Yms Zkaps+++» 2oy 1S @ basis for M + N. If k = 0, then
{X{,..., X;)} is interpreted as the empty set.

(i) dim(M + N)= dim(M) + dim(N) — dim(M N N).

(iii) There exists a subspace M, C V such that M N M, = {0) and
M+ M, =V.

Definition 1.5. If M and N are subspaces of V that satisfy M N N = (0}
and M + N = V, then M and N are complementary subspaces.

The technique of decomposing a vector space into two (or more) comple-
mentary subspaces arises again and again in the sequel. The basic property
of such a decomposition is given in the fellowing proposition.

Propositien 1.1. Suppose M and N are complementary subspaces in V.
Then each x € V has a unique representation x = y + z with y € M and
z € N.

Proof. Since M + N =V, each x € V can be written x = y;, + z, with
wWE€Mandz, e NIfx=y, +z,withy, € Mandz, € N, then 0 = x —
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x=(y;=»)+(z, —z;). Hence (y, —y))=(z;, —z;) so (y, —y)EM
N N = {0). Thus y, = y,. Similaﬂy,z, = z,. O

The above proposition shows that we can decompose the vector space V
into two vector spaces M and N and each x in ¥ has a unique piece in M
and in N. Thus x can be represented as (y, z) withy € M and z € N. Also,
note that if x,, x, € V and have the representations ( y,, z,), (), z,), then
ax, + Bx, has the representation (ay, + By,, az, + Bz,), for a, 8 € R. In
other words the function that maps x into its decomposition ( y, z) is linear.
To make this a bit more precise, we now define the direct sum of two vector
spaces.

Definition 1.6. Let V| and V¥, be two real vector spaces. The direct sum of
V, and V,, denoted by V, & ¥,, is the set of all ordered pairs (x, y},
x €V, y€V,, with the linear operations defined by a,{x,, y,) +
a{ Xy, ¥} = (X + ayxy, @, + @y 3,)

That ¥V, @ V, is a real vector space with the above operations can easily
be verified. Further, identifying ¥, with ((x,,0)x € ¥;} = ¥, and ¥, with
{0, yMly € V,) = V,, we can think of ¥, and V, as complementary sub-
spaces of V¥, @ V,, since ¥, + ¥, =V, ® V, and V, N ¥, = (0,0}, which is
the zero element in ¥, & V.. The relation of the direct sum to our previous
decomposition of a vector space should be clear.

¢ Example 1.3. Consider ¥ = R", n > 2, and let p and g be positive
integers such that p + ¢ = n. Then R? and RY are both real vector °
spaces. Each element of R” is a n-tuple of real numbers, and we can
construct subspaces of R” by setting some of these coordinates
| g) with
yER0ERY and N = (x € Rx = () with0e R? and z &
R?). Tt is clear that dim(M) = p, dim(N) = g, M N N = {0}, and
M + N = R". The identification of R? with M and RY with N
~ shows that it is reasonable to write R”? @ RY = RP*9, ®

equal to zero. For example, consider M = {x € R"|x = (

i.2. LINEAR TRANSFORMATIONS

Linear transformations occupy a central position, both in vector space
theory and in multivariate analysis. In this section, we discuss the basic
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properties of linear transforms, leaving the deeper results for consideration
after the introduction of inner products. Let ¥ and W be real vector spaces.

Definition 1.7. Any function 4 defined on V and taking values in W is
called a linear transformation if A(a;x, + a,x,) = a,A(x,) + a, A(x,) for
all x,, x, € V and a,, a, € R.

Frequently, A(x) is written Ax when there is no danger of confusion. Let
£(V, W) be the set of all linear transformations on ¥ to W. For two linear
transformations 4, and 4, in £(V, W), A, + A4, is defined by (4; + 4,)(x)
= A;x + A,x and (@A) x) = aAx for a € R. The zero linear transforma-
tion is denoted by 0. It should be clear that £(V, W) is a real vector space
with these definitions of addition and scalar multiplication.

¢ Example 14. Suppose dim(¥') = m and let x,,..., x,, be a basis
for V. Also, let y,,..., y,, be arbitrary vectors in W. The claim is
that there is a unique linear transformation. 4 such that Ax; = y,,
i=1,..., m. To see this, consider x € V and express x as a unique
linear combination of the basis vectors, x = La;x,. Define 4 by

4

n
Ax =Y aAx, = Y oy,
i 1

I

The linearity of 4 is easy to check. To show that A4 is unique, let B
be another linear transformation with Bx; = y,, i = 1,..., n. Then
(A-B)x)=0 for i=1,...,n, and (4 — B)}(x)=(4 —
B)Za;x;) = Xa,(A — B)Yx;)=0forallx € V. Thus 4 = B. ®

The above example illustrates a general principle—namely, a linear
transformation is completely determined by its values on a basis. This
principle is used often to construct linear transformations with specified
properties. A modification of the construction in Example 1.4 yields a basis
for £(V, W) when V and W are both finite dimensional. This basis is given
in the proof of the following proposition.

Proposition 1.2. If dim(V) = m and dim(W) = n. then dim(£(V, W)) =

mn.

Preof. Let x,,..., x,, be a basis for ¥ and let y,,..., y, be a basis for W.
Define a linear transformation 4;;, i =1,..., mandj = 1,..., n, by

0 ifk=i
Aji(xk) - {)’j ifk=1i"



