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FOREWORD

Wave motions have the characteristic property that after a signal is observed
at one point, a closely related signal may later be observed at a different point.
Sogietinies the main difference between the two signals is in their amplitude,
perhaps because the wave's energy is being spread out over a larger area (or
focused within a smaller area). Apart from any such change in amplitude,
however, various changes in the shape of the wave-form are also possible, and
great interest is attached to the mechanisms producing these. Most me-
chanisms causing wave-forms to change shape can be analysed to advantage in
one-dimensional systems. This is because the difficulties of analysis are greatly
reduced in such systems, without the most crucial features of those me-
chanisms being suppresscd.

This monograph uses this simplification to give a most valuable in-
troduction to the principal mechanisms that act to change wave-forms. These
mechanisms include dispersion, dissipation, and nonlinearity, either se--
parately or in various combinations. The analysis includes, furthermoye, the
study of those remarkable classes of wave-forms for which the distorting e flects
of different mechanisms exactly cancel.

Professor Bhatnagar was outstandingly well qualified to write this monog-
raph. In it, he leads the reader progressively, by simple stages, through an
extensive mass of sophisti¢ated modern material within this intriguing field.
The resulting book is a quite admirable introduction to its subject.

I had written the above words before the deeply regretted and untimely
death of Professor Bhatnagar on 5 October 1976, when the world of applied
mathematics suddenly lost one of its most respected figures. After the shock of
this great loss had subsided, I felt anxious to ensure that Professor Bhatnagar’s
last book would receive the wide circulation that it richly merits. I am deeply
grateful to Dr. Phoolan Prasad for his excellent work as editor. Applied
mathematicians owe him a great debt for helping to make this important text
generally available.

JAMES LIGHTHILL



PREFACE

Mehta Research Institute, in collaboration with the Indian Mathematical
Society, conducted a four-week course on ‘Hyperbolic Systems of Partial
Differential Equations and Nonlinear waves’ from 17 May to 15 June 1976
for the benefit of the research workers desirous of taking up this fascinating, as
well as useful, field of creative activity. The author gave a series of lecti == on
some aspects of the nonlinear waves. He mainly concentrated on the stcady
solutions of the celebrated model equations that go by the name of Burgers
equation and Korteweg—de Vries (Kd V) equation, and on soliton interactions,
and on the meaning of group velocity for the nonlinear dispersive waves and
more briefly touched upon the general equation of evolution of which the KdV
equation is a particular case. Out of the many equations of evolution, which

have afgracted the notice of the outstanding workers in the field during last two
“decades, choice fell on the two model equations mentioned above simply
because the Burgers equation is the simplest model of a diffusive wave and the
KdV equation is the simplest model of a dispersive wave. The latter equation
has further become important on account of the solitary wave solution which
it admits, '

The present monograph, more or less faithfully presents the contents of the
lectures by the author with the exception of the appendix to Chapter 1 and the
two appendices to Chapter 2 which have been included to make it self-
contained as far as possible.

The subject of nonlinear waves is being pursued very actively at present and
consequently the lectures had to be generally open-ended. It is hoped that the
present monograph will provide a necessary background on the techniques
and the subject matter.

The author wishes to acknowledge his gratitude to many mathematicians
whose work has made this lecture course possible. Among them, he is
particularly indebted to Professors M. J. Lighthill, G. B. Whitham, P. D. Lax,
R. M. Miura, J. M. Greene, C. S. Gardner, M. D. Kruskal, T. Taniuti, and
C.C. Wei as their outstanding contributions to the subject formed the
backbone of the course.

Allahabad P.L.B.
September 1976
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NOTE

Professor Bhatnagar was carefully editing the manuscript of this book,
making minor changes and correcting errors, when he suddenly passed away
on 5 October 1976. It was then that I took up the preparation of the final form
of the manuscript, fully aware that had he done it himself, he would have
achieved a higher level of perfection.

The publication of this book has been possible due to the keen interest
shown by Professor M. J. Lighthill, Lucasian Professor of Mathematics,
University of Cambridge. The Oxford University Press, London, coming to a
quick decision regarding the publication, has speeded up the bringing out of
this book.

It was possible for me to complete the final form of the manuscript within a
short time due to the spontancous help given by Dr.V,G. Tikekar,
Dr. Renuka Ravindran, and Dr. Swarnalata Prabhu, who, like me, are also
students of Professor Bhatnagar.

Indian Institute of Science PHOOLAN PRASAD

Bangalore
August 1977



1
LINEAR WAVES

1.1 Introduction

IN this chapter we will discuss some important properties of linear waves which
are governed by linear equations and which are usually described as having
snrall amplitudes, which, in reality, means infinitesimally small amplitudes. The
purpose of including this chapter in a monograph on nonlinear waves is
threefold: (i) to introduce necessary terminology; (ii) to focus attention on some
important properties which are necessary to understand the nonlinear-wave
phenomena which are determined by nonlinear systems of hyperbolic
equations; and (iii) to prepare a background against which the properties of
linear and nonlinear waves may be compared and contrasted.

We note that in this monograph we shall generally consider waves in one-
dimension so that only two independent variables x and ¢ will occur in our
discussion. We shall designate x as the spatial coordinate and ¢ as the time
coordinate; this sort of specifis®ion permits us to use the well-known
terminology associated with waves, such as wavelength, wave number, period,
frequency, amplitude, wave velocity, group velocity, etc.

1.2. Linear wave equation: wave terminology
Let us start with the celebrated wave equation

b=y, . (L.1)
where ¢ is some property associated with the wave and c? is a positive
constant. This equation determines the spatial and temporal evolution of ¢ in
a homogeneous, isotropic, and conservative system. In fact, we shall define a
wave in a general way as a temporai and spatial evolution of an entity.

We can write the general solution of (1.1):

&(x, ) = f(x —ct) +g(x +ct), (1.2)

where f and g are arbitrary functions. The first term in (1.2), as we know,
represents a progressive wave moving in the positive direction of the x-axis
with a constant speed ¢, while the second term represents a progressive wave
moving in the negative direction of the x-axis with the same speed c.

The argument x —ct =p, of the f-wave is called its phase. Similarly,
x + ct = p, is called the phase of the g-wave. Evidently, p, is constant in space-

time if %Et.f_ =0, i.e.if ‘;—: = ¢. Thus, an observer moving with velocity ¢ with the
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Jf-wave will always notice the same phase of the f-wave and, therefore, the
same state of wave motion as indicated by the initial value of /. Similarly, an

. . .. d . .
observer moving with velocity ﬁ = — ¢ along the g-wave will always notice

the same phase p, or the same value of g with which he started. The above
statement gives physical meanings to the terms phase and wave velocity, also
called the phase velocity.

In a periodic progressive wave (say when f is periodic function of p, and
g =0), a point where ¢ is maximum is called a crest and a point where ¢ is

_minimum is called a trough.

In the language of the hyperbolic partial differential equations to which
class (1.1) belongs, we say that the eqn (1.1) admits two real characteristics in
the (x, t)-plane:

dx
; b
¢ “dt g
and ~ HS)
' dx
Ci—=—
dt .

Along the first characteristic C*, f = constant, while along C~, g = constant.
Thus, f =constant and g = constant are the corresponding compatibility
relations.

We note that the bidirectional propagation of wave represented by (1.1)is
not unexpected. The equation is invariant under the transformation:

X— —X, t— —¢. (1.4)

The equation is time-reversible and therefore we can study the future as well as
the past of the wave. In contrast, in Chapter 2, we shall discuss unidirectional
equations of evolution.

Let us now give some parncular values to the functmns f: and g, say

f(-_"—Ct)=asin(kx—wt)’c=(_E

and . (1.5)
gx+ct)=0

with constant values of w and k. Then,
¢ =asin (kx — wt) (1.6)

represents a periodic progressive wave of amplitude a with wave velocity ¢
given by

w=kc or

=€

=c. (1.7)
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FiG. 1.1. Plot of ¢ against x for a given value of .

Eqn (1.6) is a solution of the partial differential equation (1.1) satisfying the
initial conditions:

¢(x,0) = asin (kx), ¢,(x,0)= — w acos(kx). (1.8)

For a given , ¢ is sinusoidal i x as indicated in Fig. 1.1. S (e

At any time t, the points x = (4n + l)%+ct,whercn=0,;t 1,+2,...,are

. . i n
where ¢ attains maximum values or crests, and the points x = (4n + B)Ek— +ct,

. are where it takes minimum values or troughs. The nomenclaturg, crest and
trough, is derived from the geometric shape of the ¢-profile in Fig, 1.1. The
distance between two consecutive crests (or troughs) is called the wavelength
and is denoted by A:
n n 2n
A—{(4n+ S)2k+ct}-{(4n-f- l)ﬁ+ct}—-’-‘—. : (1.9)

From (1.6) it is clear that k gives the number of waves per unit length (taken
here in units of 2x) and hence it is called the wave number. All the points on the -
¢-profile at a given time, whose abscissae differ by integral multiples of 4, have
the same phase.

At a given point with abscissa, say x,,¢ oscillates with respect to ¢ with
period

P2, (1.10)

3 _
w= T’:— is called the (angular) frequency of the wave and denotes the number of

waves passing through a fixed point per unit time (taken here in units of 2n).
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If instead of the choice (1.5), we take
f(x — ct)=asin (kx — wt)
and ! (L.11)
g(x + ct) = asingkx + wt),
we get
¢ =[2acos wt] [sin kx] (1.12)

so that we can study the variatigns of ¢ with respect to x and t independently of
each other. This choice evidently corresponds to the following initial
conditions for ¢:

¢(x,0) = 2asin kx, ¢,(x,0)=0. (1.13)

R

k
points x = (2n + l)sz-, where ¢ attains extreme values are called antinodes. The

The points x = —, where ¢ = 0 at all times are called nodes of the wave. The

solution (1.12) has been obtained by the superposition of two sinusoidal
progressive waves of equal amplitude, wavelength, and frequency, but moving
in opposite directions. Except at the nodes, the quantity ¢ oscillates in ¢ with
period P, the amplitude at the antinodes is maximum and equal to 2a which is
clearly equal to the sum of the amplitudes of the component f- and g-waves.

Since there is no communication in the form of energy or momentum
transfer between the waves separated by nodes, the wave form represented by
eqn (1.12) is called the standing wave. The concept of nodes and antinodes are
peculiar to the standing wave.

From the above description, it is clear that a solution to (1.1) under certain
circumstances represents a progressive wave and under certain other circum-
stances represents a standing wave. We also know that the transverse wave in
an elastic wire stretched taut, in which the motions of various points of the wire
are at right-angles to the direction of wave propagation, is represented
mathematically by the eqn (1.1). This equation also represents the longitudinal
sound wave in air in which the air molecules vibrate about their mean
positions in the direction of wave propagation.

1.3. General linear equation, dispersion relation

We have introduced the above terms with the help of a specific equation,
called the standard linear wave equation. Let us now counsider a general linear
partial differential equation in two independent variables x and ¢:

L[¢]1=0, (1.14)
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where Lis a linear differential operator. When the required initial conditions:
¢(x,0) = ¢0(x)’ ¢l(x90) - ¢1 (x)h v g (1'15)

are given, we can reduce the given equation to an ordinary differential
equation in x-variable with the help of the Laplace Transform technique
provided the functions ¢,(x) are sufficiently smooth. It is always possible
(under certain conditions) to solve a linear ordinary differential equation, at
least in principle, provided the necessary boundary conditions are given.
However, at present we are not interested in this approach as we are interested
in a general discussion of eqn (1.14). The equation being linear, we can build up
its general solution by superposition of its various Fourier components.
Consequently, let us substitute

¢ = aexp {i(kx — wt)} (1.16) .

in eqn (1.14) in which we assume now that the independent variables x and ¢ dov
not appear explicitly and the equation is homogeneous. This substitution

removes all derivatives with respect to ¢ and x: (—%4 —iw, % —ik and reduces

it to the following relation:
D(w,k;A;) =0, (1.17)

where A, are the parameters occurring in eqn (1.14). Eqn (1.17) is the dispersion
relation which determines the frequency  of the wave in terms of the wave
number k and the parameters A, We shall write (1.17) formally as

o =owlkA). (1.18)

The number of roots of eqn (1.17) depends on the degree n of this algebraic
equation in w. Clearly, n is equal to the highest order of t-derivative in
eqn (1.14). We consider each root separately as each one of them gives a
separate wave, called a mode.
Let us consider a general root

w = w(k), (1.19) ,
where we have supressed the dependence of w on A4, as in the present discussion
they do not play any specific role. The corresponding Fourier component is
d(x,t)oc exp [i{kx — a(k)t}].
The temporal evolution of ¢ depends on the nature of w(k). The following
cases arise:
(i) when w(k) is real, this Fourier component represents a harmonic wave.
(ii) When w(k)[ =iw,(k)] is pure imaginary,

plx,0)oc exp (ikx). exp {@,(k)t)
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' so that we get a nonpropagating standing wave. If Im w(k) > 0,¢p becomes
unbounded exponentially with ¢; if Im w(k) <0,¢ decays exponentially with t.
Thus, in the former case, we deal with a growing (amplifying) wave, while in the
latter case we deal with a decaying (attenuating) wave. In the former case, the
initial disturbance imposed on the system grows without bound and the
system is said to be unstable with respect to the particular mode. under
consideration; in the latter case, the system is said to be stable with respect to
the mode -

(iii) Let (k) = (k) + i, k),
where @, and w, are real. Here
¢ ccexp[i{kx — w,(k)t}] - exp(w,(k)t)

so that when w, = Im®w <0, the wave is harmonic with exponentially
decaying amplitude. The system is stable with respect to the mode in this case.
When Im @ > 0, the wave is harmonic with exponentially growing amplitude.
The system is unstable with respect to the mode but Eddington (1926) calls this
type of instability overstability because it is provoked by restoring forces so
strong as to overshoot the corresponding position on the other side of the
equilibrium. This sets up an oscillation of increasing amplitude.

"The above discussion of the dispersion relation brings out clearly its
importance in determining the response of the system to an imposed
disturbance, which is assumed to be of infinitesimally small amplitude initially.

The dispersion relation also provides a basis for another classification of
waves. Let us assume that eqn (1.19) determines a real value of w for each value
of k:0<k<oo. If %F = w' (k) £0, the wave is said to be dispersive, when
w”' (k) =0, it is said to be non-dispersive. It also introduces a new characteristic
velocity, called the group velocity denoted by V, = w'(k).

The dispersion relation provides still another basis for classification of
waves. When eqn (1.19) determines a complex value for w, the wave is said to
be diffusive; when w is real, the wave is said to be non-diffusive. The diffusive
waves are associated with attenuation of the amplitudes with time due to
certain dissipative mechanisms present in the system.

1.4. Dispersive waves: group velocity

Having introduced the terms group velocity, and dispersive and non-
dispersive waves mathematically in an abstract manner, we shall now give
them some physical meaning.

Group velocity
Let us consider the superposition of two harmonic waves which differ very
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slightly in their frequencies and wave numbers, but have the same amplitude:

¢, (x;t) = acos (kx — wt), . : (1.20)
$2(x, 1) = acos {(k + ok)x — (agI-T-‘éw)t}. (1.21)
As a result y ' ‘
=0, +¢,= [Za cos {-;—(xék - téw)}:l cos {(k + %)x - (w + 5%’):}, _
L (1.22)

which is the familiar expression for beats.
¢ oscillates with frequency w + $dw which is slightly different to w and hasa
wavelength which is also slightly different to 4 = 2n/k, The effective amplitude

A =2acos {}(xk —tdc))} (123

varies slowly with period 6—- and wavelength %I between the sum of the
w

amplitudes of the component waves and zero. Since dw and §k are small, the
period and wavelength of 4 are both large.

As a result of constructive and destructive interference, the ¢-profile along
both time and space axes appear as a series of periodically repeating groups as
shown in Fig. 1.2. Each group consists of a number of waves.
~ The surface over which the group amplituce remains constant is defined by

the equation

x0k — téw = Constant. (1.24)

From egn (1.24) it follows that the groups themselves are propagated- with
velocity

dx éw ,
3 = 35 = @) (n the limit 5k—0), (1.25)

where the pnmc denotes differentiation with respect to k. Therefore, thc group
velocity V, is given by

= w'(k)
difference in frequencies of comiponent waves
~ difference in wave numbers of component waves

The above discussion imparts physical meaning to the group velocity.

FiG. 1.2. Formation of ‘beats’ or ‘groups’ by superposition of two harmonic waves.
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We have earlier defined the phase velocity ¥, through the relation
V, =w/k.

Dispersive and non-dispersive waves

In general, both phase velocity and group velocity are functions of the wave
number. We can easily check that when "' (k) #0, ¥, is different from ¥, and
depends on k so that the waves of different wavelengths travel with different
group velocities. Let us consider a disturbance initiated at x =0 at time t =0
which consists of a superposition of a number of wavelengths. Since the
components of the disturbance with different wave numbers travel with
different velocities, after some time the disturbance will be spread over a
certain length which increases with time. In this situation we say that the wave
has undergone dispersion. It is also clear that along the wave-train the wave
number varies slowly. i

When w”'(k) =0, both the phase velocity and group velocity coincide and
there is no separation of waves of different wave numbers. In this case the wave
is non-dispersive.

Example
On substituting (1.16) in (1.1) we get the dispersion relation w = + ck, so that
here V, = V, = + c and the wave represented by (1.1) is non-diffusive and non-

dispersive.

LS. General solution of the linear-wave equation . ,

We have so far considered individual Fourier components of a linear wave.
We can obtain the general solution of the equation by superposing these
individual Fourier components:

¢(x,t)= j Alk)exp[i{kx — o(k)t} ]dk, (1.26)
where @ = w(k) is the function of the wave number and the parameters of the
problem as determined by the dispersion relation and the spectrum function
A(k) takes care of the initial condition. In principle, we can always construct
the spectrum function in a given problem though at times it may be very
tedious to do so. The solution (1.26) corresponds to the initial condition

| #(x,0) = J f A(k)explikx)dk, (1.27)

which is the Fourier integral for ¢(x,0) and consequently, given ¢(x,0), A(k)
can be evaluated.

We shall now discuss the asymptotic behaviour of eqn (1.26) as ¢t — co. In
fact we are interested in knowing how (1.26) behaves after the lapse of large
time, i.e., when ¢ »t,, where ¢, is some characteristic time, like period P,
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associated with the wave. The simplest method for obtaining this asymptotic
value is the method of steepest descent or the saddle-point method because it
demands the least possible details. (In Appendix I at the end of this chapter, we
have briefly described this method. See also Jeffreys and Jeffreys (1946), and
Dennery and Krzywicki (1967).)

We write (1.26) in the form

L

ox.) = j " AWerpicx(hy}dk, (128)

where the phase function y(k) is given by
200 =k — (k). (1.29)
We assume that x(k) is analytic in the complex k-plane for a fixed value of x/t.
In most of the physical problems of interest, this assumption is always valid.

A saddle point is defined as a point where the phase function y(kj attains a
stationary value. Therefore, in the present case, the saddle points are given by

k)

I =0, (1.30a)
i.e. by
' '(k) = x/t, provided @"'(k) % 0. (1.30b)
On solving for k, we get the saddle points :
ky = ky(x/t). ' (1.30c)

Since the path of integration is along the real line, it is sufficient to consider
only real saddle points k.

Corresponding to the saddle point k, the saddle-point metheds gives the
following asymptotic value for ¢(x,t)

PP Cu ‘:;’;‘(‘l"j;; x(k) + la) (1.31a)
_JeDAR etk ~ot)) +idd 3
{tlo"(k)1}'? '
as t - a0,

where

a=-:—, if @"'(k) <0, i. e. if  has & minimum value at k,

- _2, if @”(k) >0, i. if x has a maximum value at k,. (1.32)
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Every other saddle point contributes to the value of ¢(x,t) similarly and
thus, taking all the saddle points, m in number, into account, we have

g A(koJ(Zn)exp[i {k;x — ox(k)t} — %nsgnw"(k,)]

i 2, PR il
where
sgno’(k)= —1, if w"(k)<0
= 1, ife"k)>0 } o34

The asymptotic expression (1.31b) for ¢(x,t) appears surprising in many
ways:

(i) it represents a locally harmonic wave which is not uniform in the sense
that, in view of (1.30c), k; and (k) vary with x and ¢ (through the combination
x/t), in spite of the fact that the initial state of the wave was not harmonic;

(i) ultimately, ie. when t > P, a phase difference is introduced which is

equal to ;— if the group velocity @’(k) decreases with k and is equal to — %if the
group velocity w’(k) increases with k; and _

(i) when w''(k;)# 0, the amplitude A4(t) of the wave given by
/ @m) Alky)
{tlo"(k)I}"*

decreases inversely as the square root of t over distances and times of the order
of x and t themselves as seen from the following discussion of the relative
changes in k with x and t. Assuming that »"(k;) # 0 and rewriting (1.30b), we
have for a saddle lpoint k

x=w'(k}. (1.36)
On differentiating partially with respect to x and ¢, we can easily show that
k, o'k 1 1
Eeme—e——=0f ~ 1.3
k " ko'() x O(x) A
and - . .
' k, w'(k) 1 1
i Ol o O | il 1 . 1.38
k kw'"(k) t ¥ t ) (=08

Since we are considering large values of time (¢t » P) and large distances
(x > 4); the above expressions p_redict relative changes of O(1) only over times



