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Preface
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Nonlinear hyperbolic partial differential equations describe many physical
phenomena. Particularly, important examples occur in gas dynamics, shallow
water theory, plasma physics, combustion theory, nonlinear elasticity, acous-
tics, classical or relativistic fluid dynamics and petroleum reservoir engineering
etc. For linear hyperbolic equations with suitably smooth coefficients, it is well-
known that Cauchy problem always admits a unique global classical solution
on the whole domain, provided that the initial data are smooth enough. For
nonlinear hyperbolic equations, however, the situation is quite different. Gen-
erally speaking, in this case, the classical solutions to Cauchy problem exist
only locally in time and singularities may occur in a finite time, even if the

initial data are sufficiently smooth and small.

This book is concerned with the classical solution to nonlinear hyperbolic
partial differential equations. The greatest part of the book is the fruit aca-
demic research on the part of the author. Some of what contained in the book
has been published for the first time, and what was previously published in

the form of separate papers has also been revised and upgraded.

There are 7 chapters in this book. Chapter 1 is a preliminary chapter in
which we give some basic concepts of nonlinear hyperbolic system: genuinely

nonlinear, linearly degenerate, weak linear degenerate, matching condition etc.

In chapter 2, we shall investigate the first order nonlinear hyperbolic equa-
tion in two independent variables, and give some results on the classical solu-

tions.
Chapter 3 is devoted to the study of the mechanism and the character
of singularity caused by eigenvectors are investigated for nonlinear hyperbolic

system, and some new concepts on nonlinear hyperbolic system are proposed.
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Chapter 4 will concern the Cauchy problem and mixed initial boundary
value problem for hyperbolic geometric flow. Some geometric properties of
hyperbolic geometric flow on general open and closed Riemannian surfaces are
also discussed.

In chapter 5, we shall investigate the life-span of classical solutions to the
hyperbolic geometric flow in two space variables with slow decay initial data.

Chapter 6 will be concerned the dissipative effect of the relaxation. The
convergence of approximate solution to nonlinear hyperbolic conservation laws
with relaxation is proved.

In chapter 7, we shall consider some applications of nonlinear hyperbolic
system.

The whole approach to the problems under discussion is primarily based
on the theory on the local solution. For more comprehensive information, the
reader may refer to the book by Li Tatsien and Yu Wenci: Boundary Value
Problems for Quasilinear Hyperbolic Systems (Duke University Mathematics
Series V, 1985).

Because the local classical solution theory has been established well, the
key point of this method is how to establish some uniform a priori estimates
on the solution.

This work was partially supported by plan for scientific innovation Talent
of North China University of Water Resources and Electric Power.

Author
August, 2016
Zhengzhou, China
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Chapter o

Introduction

In this chapter we give some basic concepts of nonlinear hyperbolic system:
genuinely nonlinear, linearly degenerate, weak linear degenerate, matching con-
dition etc.

1.1 Intention and Significances

For the following nonlinear hyperbolic system:
u, + A(u)u, = B(u) (1.1.1)

where u = (uy,u2, " ,u,)" is unknown vector function, B(u) € C'(R")
is known vector function with B(u) = (bi(w), - ,bn(u))T, and A(u) =
(aij(w))nxn(ai;(w) € CHR™), 4,j = 1,2,--+,n) is known matrix function,
it is well-known that system (1.1.1) may be arisen in many physics, such as
nonlinear wave phenomena, gas dynamics system, elastic dynamics, the kinetic
theory and multiphase flow. These equations play an important role in both
science (such as physics, mechanics, biology, etc.) and technology.

If the matrix A(u) is independent of w, we meet linear hyperbolic waves
given by

u; + Au, = B(u)

In the scalar case, we have, for instance, the Cauchy problem

U+ Uy =0
t=0i0=dls)

where ¢(x) € C* with bounded C' norm. The classical solution always exists
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dx
for t € R, that is, the wave speed is constant: — = 1 and the wave always

dt

keeps its shape in the course of propagation. In the general case, there are n
linear waves given by
u; + Au, =0
{ t=0:u= ¢(x)

with constant speeds

(Cil—‘: =X (i=1,2,-+-,n)

where \; is the eigenvalue of the matrix A and A\; < A2 < .-+ < A,. Each
wave keeps its shape in the propagation, and the interaction among waves is
only a linear superposition. It is the reason that we can hear and distinguish
many persons speaking at the same time. Otherwise, our life would be very
complicated.

The situation for nonlinear hyperbolic system is totally different. Gen-
erally speaking, the classical solutions to system (1.1.1) exists only locally in
time and singularities may occur in a finite time, even if the initial data are
sufficiently smooth or sufficiently small. To illustrate this, we give two simple
examples.

Example 1.1.1 Consider the following Cauchy problem of Burger’s
equation with inhomogeneous term:

{ up + Uy = u? (112)

t=0:u=uo(x)

where ug(z) € CZ([a,b]), up(z) exists maximum value at the point 3y € (a,b),
and

uo(fo) >0, ug(fBo) #0

On the existence domain {(¢,z)|0 < t < Ty, z € R} of the classical solution
to Cauchy problem (1.1.2), let

.’E:‘(p(taﬂ)v (b(O:/B) Zﬂ

be characteristics, and

’U(t, ﬂ) — u(t7 ¢(t7 IB))
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then, (¢,v) satisfies

dp  dv

a—va Ezv ) ¢(O7ﬁ):ﬂ, U(Ovﬂ)ZUO(ﬁ)

It follows from (1.1.3) that

uo ()

u(t,a:) = 'U(t,ﬁ) = Tuo(ﬂ)

Obviously, the life span T for v(t, 3) satisfies

Moreover, we have

¢(t,8) = B — In(1 — tuo(B))

Hence,
¥ . tu(d)
3B~ T T tu(®

Suppose that d,u blows up at t = T* > 0. Since

ou 1)

as t — T™. Thus, we obtain

By ug(8o) = 0,u5(fo) # 0, we have

h'(Bo) # 0

(1.1.3)

(1.1.4)

(1.1.5)

Noting the continuity of h(/3),there exists a neighborhood domain D(8,) of Sy,

such that
h(B) #0, B € D(bo)

Without loss of generality, we suppose that

W(B)>0, B € D(B)
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Then, there exists 3, € D(f3,), such that

h(B+) < h(Bo)
that is,
T <T (1.1.6)

(1.1.6) shows that we can choose suitably ug(x) such that u,(t,z) first
blows up in a finite time.
On the other hand, by (1.1.4) and (1.1.5), if ug(z) € C*'(R), and

up(z) <0, wuy(z) >0, VzxeR

then Cauchy problem (1.1.2) admits a unique global classical solution on t > 0.
Example 1.1.2 Consider nonlinear hyperbolic system with dissipation:

(1.1.7)

U + Uy, = —QU
t=0:u=¢(x)

where o (o > 0) is a constant,¢(z) € C*'(R) with bounded C! norm.
Suppose that x = z(¢, 8) ((0,3) = () is characteristics, then, we have

u(t, z) = ¢(f8) exp(—at)

@' (B) exp(—at)
1+ a™'¢'(B)(1 — exp(—at))

By (1.1.8), if @ (a > 0) is suitably large, then d,u(t, z) admits uniform a priori

U (B ®) = (1.1.8)

estimate, and then, Cauchy problem (1.1.7) admits a unique global classical
solution on ¢t > 0. If a (o > 0) is suitably small, then there exists T, > 0
(depending on 8 and «), such that

Uz (t,x) — 00

as t — T, . Hence, the classical solution to Cauchy problem (1.1.7) must blow
up in a finite time.

There is considerable practical interest in obtaining numerical approxima-
tions of solution to system (1.1.1). Knowing that the solution is smooth and
allows one to take advantage of efficient high-order schemes which may be in

appropriate for solutions with discontinuity. In fact, the global existence of
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the approximate finite element solution shows that the approximate solution
is always in a neighborhood of a classical solution to system (1.1.1).

Therefore, for the first order nonlinear hyperbolic system (1.1.1), it is of
great important in both theory and application to study the following three
problems.

(1) Under what conditions, does the problem under consideration ( Cauchy
problem, Boundary value problem, Generalized Riemann problem etc.) for the
first order nonlinear hyperbolic system admit a unique global classical solution
on t > 07 Basing on this problem, we can further study the regularity and
the global behavior of the solution, particularly the asymptotic behavior of the
solution as t — +00.

(2) Under what conditions, does the classical solution to the problem under
consideration blow up in a finite time? When and where does the solution blow
up? Which quantities will blow up? Can we further investigate the behavior or
mechanisms of the blow-up phenomenon?

Even if the solution blows up in a finite time, physical phenomenon still
exists with singularities. Therefore one wants to understand further.

(3) How do the singularities, in particular, shocks grow out of nothing?
What is the structure of the singularities? What about the stability of the
singularities?

For the case that n = 1 or n = 2, these problems have been solved com-
pletely by the method of characteristics and the Whitney’s theory of singu-
larities of mapping of the plane into the plane (cf. [33] and the references
therein).

For the following simple and important case:

u; + A(uw)u, =0 (1.1.9)

Suppose that system (1.1.9) is strictly hyperbolic and genuinely nonlinear.
Consider Cauchy problem of system (1.1.9) with the following initial data:

t=0:u=¢(z) (1.1.10)
F.John?!! proved that if A(u), ¢(z) € C?,suppo(z) C [ag, Bo], and

0 = (Bo — a0)?sup|9”(z)| >0
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is small enough, then the first order derivatives of C? solution u = u(t,z) to
Cauchy problem (1.1.9)-(1.1.10) must blow up in a finite time. Liu Taiping[®?
generalized F. John’s result to the case that a part of eigenvalues is genuinely
nonlinear, while the other part of eigenvalues is linearly degenerate. In this sit-
uation he showed that for a quite large class of small initial data, the first order
derivatives of the classical solution still blows up in a finite time. Hérmander!”!
improved F. John’s result, by a self-contained and somewhat simplified expo-
sition of the method. Moreover, by determining the time of blow-up asymp-
totically, he gave a sharp estimate on the life span of the solution.

Bressanl® gave a result a result on the global existence of the classical
solutions as follows: Suppose that system (1.1.9) is strictly hyperbolic and
linearly degenerate in the Lax, the initial data ¢(z) have a compact support
and the total variation is small enough (i.e. TV(¢) < 1), then the Cauchy
problem (1.1.9)-(1.1.10) admits a unique global classical solution u = w(t, )
for all t € R.

Employing the nonlinear geometrical optics, S. Alinhacl*! reconsidered the
result presented by Hormander and gave a more precise estimate on the life
span.

Here, we point out the work obtained by Li Tatsien, Zhou Yi and Kong
Dexing (cf. [27],[28], [33], [35]~[37]). They introduce some new concepts—null
condition and weak linear degeneracy, gave a quite complete result on the
global existence and the life span of C'! solution to Cauchy problem (1.1.9)-
(1.1.10), where the eigenvalues of system (1.1.9) might be neither genuinely
nonlinear nor linearly degenerate, and ¢(z) is small in the following sense:
there exists a constant p (u > 0) such that

0= sup{(1+]a)"*(|6(a)| + ¢/ (x)))} (1.1.11)

is small.

For the case that
B(u) #0

if B(u) is linear vector value function, B(0) = 0, and
A=-L(0)VB(0)L'(0) (1.1.12)

is weak row-diagonally dominant, where L(u) = (l;;(u)) is composed by the left
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eigenvectors, L~"(0) is the inverse of L(0), ||uo(z)||c1 is sufficiently small, then,
Cauchy problem for system (1.1.1) admits a unique global classical solution
ont > 0. If B(u) is nonlinear vector value function, B(0) = 0, and A is
strictly row-diagonally dominant, ||ug(z)||c: is sufficiently small, then, Cauchy

problem for system (1.1.1) admits a unique global classical solution on ¢ > 033l

1.2 Basic Concepts

1.2.1 Definition of Nonlinear Hyperbolic Systems

Definition 1.2.1 System (1.1.1) is called hyperbolic on the domain un-
der consideration, if

(1) A(u) has n real eigenvalues \i(u) (i =1,2,--- ,n);

(2) A(u) is diagonalizable, i.e., there exists a complete set of left (resp.
right) eigenvectors li(u) = (Lii(w), -+ ,lin(u)) (resp. ri(uw) = (ru(u),- -,
rni(w))T) corresponding to \;(u) (i=1,2,--+ ,n):

Li(uw)A(u) = Ni(u)li(u) (resp. A(u)ri(u) = \(u)ri(u)) (1.2.1)

we have

det|l;j(u)| #0 (resp. det|rj(u)| # 0) (1.2.2)

System (1.1.1) is called strictly hyperbolic on a certain domain, if A(u)
admits n real and distinct eigenvalues A\;(w)(i = 1,2,--- ,n). Without loss of
generality, we suppose that

A(u) < A (u) < -+ < Ap(u) (1.2.3)

Without loss of generality, we may suppose that
Li(wr;(u)=6; (G,j=12,---,n) (1.2.4)
and
ri(wriu)=1 (i=1,2,--,n) (1.2.5)

where 4;; stands for the Kronecker’s symbol.
For any strictly hyperbolic system, all A;(w),l;;(u) and r;;(uw) (4,7 =
1,2,--- ,n) are supposed to have the same regularity as a;; (u) (¢,j = 1,2,--- ,n).
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However, it is not always the case for general hyperbolic hyperbolic system.

0

For example, let A(u) = ( -

u 3
- ) , the eigenvalues A\, = tuz ¢ C*™ at
U

u =0, but A(u) € C*.
1.2.2 Genuine Nonlinearity, Linear Degeneracy and Weak

Linear Degeneracy

Definition 1.2.2 For any given simple eigenvalue \;(u) is genuinely
nonlinear (denoted by GNL) in the sense of P.D. Laz'*", if

VAi(u)ri(u) #0, YueR" (1.2.6)

While \i(u) is linearly degenerate (denoted by LD) in the sense of P.D.
Lazl?®, if
VAi(uw)ri(u) =0, YueR" (1.2.7)

System (1.1.1) is GNL (resp. LD), if all eigenvalues are GNL (resp. LD).

The following 2 x 2 nonlinear hyperbolic system in diagonal form

{ re+ Ar,8)r, =0 (128)
St + /‘L(Ta :U)Sa: =0
is GNL system if and only if
IA(r, 5) op(r, s) 2
T =0, —as— # 0, V('f', S) eR (129)
System (1.2.8) is LD system if and only if
OA(r,s) _ o oulrys) _ 2
5 =0 ——51==0, Yrs)eR (1.2.10)
that is
A(r,s) = A(s),  w(r,s) = p(r) (1.2.11)

The genuine nonlinearity and the linear degeneracy are only two extreme
cases. In applications, some characteristics may be neither GNL nor LD. In
such a case, it is necessary to introduce a new concept—the weak linear de-
generacy (cf. [33]).
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Definition 1.2.3 The i-th (1 < i < n) eigenvalue \;(u) is weak linear
degenerate (denoted by WLD) with respect to w = wuq, if, along the i-th

characteristic trajectory u = u'*)(s) passing through w = ug, defined by

du
— =7r;(u(s
ds (u(s)) (1.2.12)
u(0) = ug
we have
VAi(u)ri(u) =0 (Vju —up| small)
namely,

Ni(u®(s)) = \i(uo), (V|s| small)

For simplicity and without loss of generality, we may take uy = 0.
If A\;(w) is WLD, then,

Ai(u®(s)) = Xi(0)

If all eigenvalues are WLD, system (1.1.1) is called the WLD.

Obviously, if, in a neighborhood domain of u = wug, the i-th eigenvalue
Ai(u) is LD in the sense of P.D. Lax, then \;(u) is WLD.

According to Definition 1.2.3, if A\; (i = 1,2,--- ,n) is not WLD, either

there exists an integer a; > 0 such that

dk)\l‘ ’U,(z) 8 da,:+1)\i ,u(z) s
—Eisk—()_)_ gty =0 {B = 1,2, goig). bk dsa(i+1 (s)) lozo £ 0
(1.2.13)
or
kX (u® '
d Az(d.'l:k (S)) |S=0 = O (k = 1,27 e ,)ybut )\Z(u(l)(s)) ¢ )\Z(O) (1214)

denoted by a; = +00, where u = u((s) is defined by (1.2.12).

a; is called the non-WLD index of the eigenvalue \;(u). Obviously,
if a; = 0, then in a neighbourhood of w = 0, \;(u) is GNL, and when o
increases, A;(u) is closer and closer to the WLD case.

If a strictly hyperbolic system (1.1.1) is not WLD, then there exists a
nonempty set J & {1,2,---,n} such that \;(u) is not WLD if and only if
1€ .
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1.2.3 Characteristic Forms

For any C! solution u = u(t, z) to system (1.1.1)

d

d—‘f = \(u(t,z)) (1.2.15)
is called the i-th characteristic direction, its integral curve is said to be
the ¢-th characteristics.

Let q 3 3
il + A (U)a

then, along the i-th characteristic direction,

1

du Jdu Jdudz

d_it = "a?""a;a =ut+)\i(u)um

Multiplying (1.1.1) by I;(w) from the left side, and noting (1.2.1), system

(1.1.1) equivalently reduces to the following system of characteristic form

du

Lw)gs =

Li(w)(u + N(w)ug) = Li(w)B(w) (i=1,2,---,n) (1.2.16)
= auj an - .
Zlij(u) (—at— + /\i(u)g> = Zlij(u)bj(u) (= 1,3+ on) (1.2.17)

in which the i-th equation only contains the directional derivatives of all the
unknown functions along the i-th characteristic direction.

For the case that n = 2, it is well-known that at least in a local domain
of u there exist integral factors m;(u) # 0 (i = 1,2), such that

mi(w)l;(w)du = m(w) (1 (w)duy + lio(w)dus) (i =1,2)
is a total differential dU;(i = 1,2). Hence, taking U; and U as new unknown

functions, (1.2.16) reduces to a system of diagonal form

{ o.U1 + Mo Ur = fi (1.2.18)

0 Uz + A20,.Us = fo

in which Uy, Uy are called the Riemann invariants.



