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Preface

Knot theory represents a rich mixture of many branches of mathematics,
including topology, algebra, and geometry. It is also rich in its interactions
with chemistry, physics and, more generally, technology. One of the fun-
damental problems in knot theory is the question of how to tell when two
knots are really different. The main idea is to assign some sort of invariants
to knots, so that if the invariants for two ‘knot,s are different, then so are
the knots. It would be best to have a complete set of easily computable
invariants, so that we could go the other way, saying when the knots are
equal - a much harder question.

There are many books that deal with knot invariants from various points
of view. We do not try to cover everything here; but rather emphasize basic
calculation skills and particular invariants. The reader will be introduced
to this beautiful subject by means of some classical knot invariants, which
have geometrical or topological origins aspects. We will explain the Jones
polynomial from the origimnal approach using braids and representations of
Hecke algebras. We will understand the Casson-Lin invariants via repre-
sentations of braids.

By proceeding in this way, we are forced, unfortunately, to skip many
other interesting topics in knot theory. On the other hand, we feel strongly
that it is better for students and readers to learn how to get their hands
on the topics, rather than to know some fancy words. All the materials
presented in this book can be checked by fairly direct methods, or at least
can be followed by some basic steps toward the understandings. Of course,
some basic knowledge of algebra and topology is required.

We start from the basic knot presentations. their equivalence classes,
and the well-known Reidemeister moves. In Chapter 2, we introduce braids
and their relationship to knots and links. Some classical invariants of knots
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and links are given and discussed in Chapter 3. By no means is this a
complete list. There are many textbooks dealing with knots and their
invariants. We choose to concentrate on the original definition of the Jones
polynomial and the proof of Tait’s conjectures. The Casson-type invariants
of knots are constructed from braids and their representations. It is one
of the typical and important problems in knot theory to find a geometrical
or topological interpretation of the Jones polynomial which is constructed
from algebra or to find a combinatorial interpretation of the Casson-type
invariants which is constructed from geometry and topology.

This book is based on lecture notes that were originally prepared for the
Chinese Gradnate Summer School at Sichuan University in July-August,
2000. Some parts were also taught at Oklahoma State University. I would
like to thank Xiao-Song Lin for many helpful conversations and communi-
cations, which helped me to understand the subject better, and to thank
my collaborators Weiping Zhang and Qingxue Wang for many stimulating
discussions. The students at the Chinese Graduate Summer School and
Oklahoma State University also provided useful comments.

I would like to thank World Scientific Publishing Company for publish-
ing these lecture notes, and also Rebecca Fu for her patience and help.
Thanks also go to my students Zhili Chen, Xiaowei Yang and Bin Xie for
various assistance in preparing this book.

Last but not least T want to thank my family for being there all the

time.

Weiping Li

'
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Chapter 1

Basic knots, links and their
equivalences

1.1 Definitions and equivalences

Definition 1.1.1. Let S' be a unit circle. L is a link in a closed 3-manifold
Y if there is an embedding map L : S'[]---[]S' = YV from disjoint unit
circles to Y. Let p(L) be the number of S'-components in S*[ |-+ []S".
If f(L) =1, then L is called a knot in Y.

Remark 1.1.2. (1) We do not distinguish knots and links as images of
embeddings (Im (L)) or the embeddings themselves (L). There are higher
dimensional knots (embedding S* — M%*2 for k > 2) in [Rolfsen, 1976]
which we are not taking into consideration in this book. We restrict our-
selves only to knots and links in 3-manifolds m this book.

(2) One can consider knots and links in different topological categories.
If the embedding L is (C'™) smooth, then L is a smooth link or smooth
knot. If L is piecewise linear, then L is a PL link (PL knot) (sometimes
called polygonal link or polygonal knot).

. ’ . . .
Definition 1.1.3. Two knots or links L and L are equivalent if there is a
homeomorphism / : Y — Y such that the following diagram is commuta-
tive:

g! LI_”LISI L v

J: lh (1.1)

’
- L .
St ys' —— Y.
If Y is an oriented closed 3-manifold and A is an orientation-preserving
. r . .
homeomorphism, then L and L are oriented equivalent.

Remark 1.1.4. (1) Two equivalent knots and links have the property that
there is a homeomorphism identifving their images in the 3-manifold Y.
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(2) The map h is dependent upon the category one wants to work with.
If two knots or links are ">, then the equivalence is given by a diffeomor-
phism A : Y — Y in Definition 1.1.3. Similarly for PL equivalence. h must
be a piecewise linear homeomorphism.

Exercise 1.1.5. Prove that the relation defined in Definition 1.1.3 is an
equivalent relation.

Let £(Y) (£L7(Y)) be the space of (orientation-preserving) equivalence
classes of links and knots in Y (oriented) under the above equivalent rela-
tion.

Definition 1.1.6. Two links (or kuots) L and L' are ambient isotopy if
there exists a map H : [0,1] x Y — Y such that (i) H(0.-) = Idy, (ii)
H(t,") : Y —+ Y is a homeomorphism for each ¢ € [0,1], and (iii) HyoL = L.

Any two ambient isotopy links are certainly equivalent. But it is not true
in general that any pair of equivalent links or knots is ambient isotopic. It
depends on the mapping class group of Y. Let L£,;(Y) (£],(Y)) be the space
of equivalence classes of (orientation-preserving) ambient isotopy knots or

links in Y (oriented). Thus we have £,;(Y) € L(Y) and L. (Y) C LT(Y).

at

Proposition 1.1.7. If the mapping class group of Y has only one path-
connected component, then L,;(Y) = L(Y); If the orientation-preserving
mapping class group of oriented Y has only one path-connected component,

then LH(Y) = LT (Y).

ar

Proof: There is always a path-connected component of the identity map. By
the hypothesis, any equivalent (orientation-preserving) homeomorphism /
can be connected by a (orientation-preserving) homeomorphism path from
Idy. Thus we obtain £(Y) C L,(Y) and £1(Y) € £1(Y). Therefore

results follow. Od

Example 1.1.8. If Y = R? (noncompact oriented) is the Euclidean space
of real 3-tuples. then the orthogonal group O(3) (3 x 3 matrices with de-
terminant +1 form a compact submanifold of R? of dimension 3) is a de-
formation retract of Dif f(R*) (the diffeomorphic mapping class group of
R*). Note that O(3) has two components, the component of the identity
is the subgroup SO(3) of orthogonal matrices of determinant. 1. Therefore
Diff,(R*) (orientation-preserving diffeomorphisms of R*) has only one
path-connected component. By Proposition 1.1.7,

£+ (Rli) s £+-(RZ3)'

at
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The orientation-preserving diffeomorphism equivalent knots or links in R3
are also C'™-ambient isotopy to each other.

Example 1.1.9. If ¥ = S? is the (compact oriented) 3-sphere, then
Diff, (S?) has only one path-connected component. Let f: B n+l _ pritl
be an orientation-preserving diffeomorphism, where B"tis the (n + 1)-
dimensional ball with a restriction map r : B"*1 — 9B"*! = S, Hence
the restriction flygn+1 @ S™ — S™ is an orientation-preserving diffeomor-
phism. Such a restriction map r defines a group homomorphism from
Diff (B"Y) to Dif f(S™). Let G,, be the image of this group homomor-
phism. If g € Dif f1(S™) is isotopic to Idgn, then g can be extended to an
orientation-preserving diffeomorphism of B"*! ie., g € G,. So G,, is the
path-connected cdmponent of the identity of S™. Let I',, = Dif f4(S")/G,,
be the quotient group (always Abelian). There is a short exact sequence

0 Dif fo(B"™Y) 5 Diff(S™) > T, — 0.

In fact every '), is important in classifying differential structures. The set
of diffeomorphism classes of oriented differential structures on S forms a
group H, under connected sum. H, = I', except perhaps for n = 4. It
is still an open question whether there is an exotic smooth structure on
S (smooth Poincaré congecture for 4-dimensional sphere S*). 1t is known
that the T',,’s are finite for all n except the case n = 4, by the computation
of Kervaire and Milnor. The first nontrivial group is I'y = Zsg by Milnor
[1956]. I'y = 0 by Smale [1959] and Munkres [1960]. I'; = 0 is an interesting
and difficult Morse-theoretic proof by Cerf [1974]. Therefore we have
. LH(S*) =Lt (SY).

Example 1.1.10. For ¥ = RP?, the set of l-dimensional subspaces of
R* through the origin can be identified with the real projective space RP?.
Hence 5% is a 2-sheeted covering space of RP?. By the result of Cerf [1974],
Diff(S?) has two components that are path-connected to Idgs and —Idgs
respectively. Under the identification in RP? = §% /4 1d, the mapping class
group of RP? has only one path-connected component containing Idy ps.
Hence we obtain £(RP?) = L,;(RP?) by Proposition 1.1.7.

1.2 Polygonal (PL), smooth (C°°)-links and knots in R®

It is convenient to present knots and links in R? through their perpendicular
projections on a plane. Call a link segment of a polygonal link L in R* an
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edge of L, and an end point of an edge a vertex of L. Let p : R? — R? be an
orthogonal projection , and p(L) be the image of L in the projected plane.

Definition 1.2.1. A point 2 € p(L) is a multiple point if the cardinality
of the set p~!(x) N L is greater than or equal to 2.

If the cardinality [p~!(x) N L| = n, then z is called an n-multiple point,
or a point of order n. Any 2-multiple point 2 is also called a double point.

The projection should be generic in the sense that (i) n < 2 for any
n-multiple point, (ii) the number of double points in p(L) is finite, and (iii)
every vertex of the link L has order 1.

Definition 1.2.2. A projection p : R* — R? is a regular projection for L
in R3 if for every x € p(L), then o(x) (the order of x) has the following
property:

(1) For any x € p(L), o(x) < 2;

(2) The set Cp(L) = {x € p(L) : o(x) = 2} is finite;

(3) For any a € Cp(L), p~T(2) N L does not contain any vertex of L.

Fig. 1.1 Irregular multiple points

-

The first condition for regular projections is to rule out any multiple
point other than double points, the second is to present the link with only
finite crossings, the third is to avoid non-transversal double points. Hence
any multiple point of any regular projection has a local image which looks
like a letter X. The multiple points in Figure 1.1 are not contained in any
regular projection of Definition 1.2.2.

Proposition 1.2.3. Any polygonal link L has a regular projection.

Proof: Any projection p : R? — R? has the same image for two parallel
planes, and it is completely determined by a fixed point and perpendicular
direction to the projection plane. If we fix the point to be the origin, then
the space of projections is the space of straight lines through the origin.
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This is the two-dimensional projective plane RP?. There is one-to-one
correspondence between projections R? — R? with p(0,0,0) = (0,0) and
straight lines in R® considered as elements in RP?,

Let S be the set of non-regular projections. Then it corresponds to a set
of straight lines through the origin which do not satisfy Definition 1.2.2. Let
S} be the subset of non-regular projections that have order 2 non-transverse
points (Definition 1.2.2 (3) invalid). Let S» be the subset of non-regular
projections which have order > 3 multiple points (Definition 1.2.2 (1) and
(2) invalid). We have S; U Sy C S. Any non-regular projection must have
either that the vertex is a double point (projection in S ) or that a multiple
point has order > 3 (projection in Sy). Therefore S = S U Sy, The set Sy
consists of finite line segments in RP?, and the set Sy consists of finite many
curve segments of second order. Hence S is a one-dimensional subset of R P2
(see [Crowell and Fox, 1977] for more details). The result follows. O

C

" A

Fig. 1.2 An elementary_move

Definition 1.2.4. (1) An elementary move of a polygonal link L is a re-
placement of L by a new link Ly in the following way: there is a triangle
ABC formed by three vertices which do not intersect any other point of L,
two edges AC' and BC' are replaced by AB in a link L; (a disk remove)
(see Figure 1.2). ;

(2) Two links L and L' are equivalent if they can be joined by a fi-
nite sequence of links L, Ly, -, L, = L' in which each subsequent link is
obtained from the previous one by an elementary move or its inverse.

Exercise 1.2.5. Show that the relation between two links defined in Defini-
tion 1.2.4 is indeed an equivalence relation.

Exercise 1.2.6. Let PL(R?) be the set of equivalence classes of polygonal
links in R*. Prove that the equivalent relation defined by elementary moves
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is the same as the relation defined in Definition 1.1.3. Hence PL(R?) =
L(R?).

Let f:S' — R? be a smooth embedding, i.e., f(t) = (fi(t). fo(t). f3(t))
has the following properties: (a) each f; : S — R is a smooth function, and
(b) df : Ty, S — Ty, R? is injective for every to € S'. The property (b)
is the same as saying that the linear transformation df (fg) from R = T}, S?
to R? = Ty, )R? has zero kernel, where

(l,(]) « U5 (RS Tf“b'l.

Exercise 1.2.7. Verify f : [0,27] — R? is a smooth knot, where
f(7) = ((2 + cos 37) cos 27, (2 + cos 37) sin 27, 5in 37).
In fact this is a smooth parametrization of a trefoil knot.

Theorem 1.2.8. [Burde and Zieschange, 1985, Proposition 1.10] There is
a bijective map from the equivalence classes of polygonal links in R® to the
equivalence classes of smooth links in R?.

Remark 1.2.9. (1) For links in general 3-manifolds, we have to add an ex-
tra Riemannian metric, and replace each edge by a geodesic. Theorem 1.2.8
is also true for the 3-manifold S°.

For a closed compact oriented 3-manifold Y (# R?). we can use the
Riemannian metric gy and geodesics to define a PL-linksin Y, where an
edge of the link is a geodesic with respect to the metric gy . Similarly we
have elementary moves and its corresponding relations. Hence the set of
equivalence classes is PL,, (Y), the PL-links in the 3-manifold (Y, gy). So
PLyAY) CLgAY )

Does there exist a metric gy such that L, (Y) C PL,,.(Y) 7 This is
equivalent to asking whether there exists a metric gy such that the em-
bedding L : S'|JS'[]---|]S" — Y can be represented by finitely many
geodesics. Conjecturally L, (Y) © PLg, (V) if there is a uniform lower
bound for the injective radius.

(2) For usual knots and links in R*, the PL theory and ('™ theory
provide the same result. This is why people often use these two approaches
interchangeably.



