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Preface

The ability to transfer knowledge has played a quintessential role in the
advancement of our species. Several evolutionary innovations have signif-
icantly leveraged the knowledge transfer. One example is rewiring of
the neuronal networks in primates’ brains to form the so-called mirror
neuron systems, so that when we observe tasks performed by others,
a section of the brain that is responsible for observation and a
section that is responsible for motor control are concurrently active.
Through this, when observing actions, the brain is attempting at the same
time to learn how to reproduce these actions. The mirror neuron system
represents an especially important learning mechanism among toddlers
and young kids, stimulating them to acquire skills by imitating the actions
of adults around them. However, the evolutionary processes and modifi-
cations are very slow and prodigal, and as we further developed, we tended
to rely on employing our creativity in innovating novel means for trans-
ferring knowledge. By inventing writing and alphabets as language com-
plements, we were able to record, share, and communicate knowledge at
an accelerated rate. Other innovations that followed, such as the printing
press, typing machine, television, personal computers, and World Wide
Web, each have revolutionized our ability to share knowledge and rede-
fined the foundations for our current level of technological advancement.

As our tools and machines have grown more advanced and sophisticated,
society recognized a need to transfer knowledge to the tools in order to
improve efficiency and productivity, or to reduce efforts or costs. For
instance, in the manufacturing industry, robotic technology has emerged
as a principal means in addressing the increased demand for accuracy,
speed, and repeatability. However, despite the continuous growth of the
number of robotic applications across various domains, the lack of inter-
faces for quick transfer of knowledge in combination with the lack of intel-
ligence and reasoning abilities has practically limited operations of robots
to preprogrammed repetitive tasks performed in structured environments.
Robot programming by demonstration (PbD) is a promising form for
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transferring new skills to robots from observation of skill examples per-
formed by a demonstrator. Borrowed from the observational imitation
learning mechanisms among humans, PbD has a potential to reduce the
costs for the development of robotic applications in the industry. The intu-
itive programming style of PbD can allow robot programming by end-users
who are experts in performing an industrial task but may not necessarily
have programming or technical skills. From a broader perspective, another
important motivation for the development of robot PbD systems is the old
dream of humankind about robotic assistance in performing everyday
domestic tasks. Future advancements in PbD would allow the general pop-
ulation to program domestic and service robots in a natural way by demon-
strating the required task in front of a robot learner.

Arguably, robot PbD is currently facing various challenges, and its
progress is dependent on the advancements in several other research dis-
ciplines. On the other hand, the strong demand for new robotic applica-
tions across a wide range of domains, combined with the reduced cost of
actuators, sensors, and processing memory, is amounting for unprece-
dented progress in the field of robotics. Consequently, a major motivation
for writing this book is our hope that the next advancements in PbD can
further increase the number of robotic applications in the industry and
can speed up the advent of robots into our homes and offices for assis-
tance in performing daily tasks.

The book attempts to summarize the recent progress in the robot PbD
field. The emphasis is on the approaches for probabilistic learning of tasks
at a trajectory level of abstraction. The probabilistic representation of
human motions provides a basis for encapsulating relevant information
from multiple demonstrated examples of a task. The book presents exam-
ples of learning industrial tasks of painting and shot peening by employing
hidden Markov models (HMMs) and conditional random fields (CRFs) to
probabilistically encode the tasks. Another aspect of robot PbD covered in
depth is the integration of vision-based control in PbD systems. The pre-
sented methodology for visual learning performs all the steps ofa PbD proc-
ess in the image space of a vision camera. The advantage of such learning
approach is the enhanced robustness to modeling and measurement errors.

The book is written at a level that requires a background in robotics and
artificial intelligence. Targeted audience consists of researchers and
educators in the field, graduate students, undergraduate students with
technical knowledge, companies that develop robotic applications, and
enthusiasts interested in expanding their knowledge on the topic of robot
learning. The reader can benefit from the book by grasping the fundamen-
tals of vision-based learning for robot programming and use the ideas in
research and development or educational activities related to robotic
technology.

xi
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Introduction

Robot programming is the specification of the desired motions of the
robot such that it may perform sequences of prestored motions or
motions computed as functions of sensory input (Lozano-Pérez, 1983).

In today’s competitive global economy, shortened life cycles and diver-
sification of the products have pushed the manufacturing industry to
adopt more flexible approaches. In the meanwhile, advances in automated
flexible manufacturing have made robotic technology an intriguing
prospect for small- and medium-sized enterprises (SMEs). However,
the complexity of robot programming remains one of the major barriers
in adopting robotic technology for SMEs. Moreover, due to the strong
competition in the global robot market, historically each of the main robot
manufacturers has developed their own proprietary robot software, which
further aggravates the matter. As a result, the cost of robotic tasks inte-
gration could be many folds of the cost of robot purchase. On the other
hand, the applications of robots have gone well beyond the manufacturing
to the domains such as household services, where a robot programmer’s
intervention would be scarce or even impossible. Interaction with robots
is increasingly becoming a part of humans’ daily activities. Therefore,
there is an urgent need for new programming paradigms enabling
novice users to program and interact with robots. Among the variety of
robot programming approaches, programming by demonstration (PbD)
holds a great potential to overcome complexities of many programming
methods.

This introductory chapter reviews programming approaches and illus-
trates the position of PbD in the spectrum of robot programming techni-
ques. The PbD architecture is explained next. The chapter continues with
applications of PbD and concludes with an outline of the open research
problems in PbD.

Robot Learning by Visual Observation, First Edition. Aleksandar Vakanski and
Farrokh Janabi-Sharifi. >
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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1 Introduction
1.1 Robot Programming Methods

A categorization of the robot programming modes based on the taxonomy
reported by Biggs and MacDonald (2003) is illustrated in Figure 1.1.
The conventional methods for robot programming are classified into
manual and automatic, both of which rely heavily on expensive program-
ming expertise for encoding desired robot motions into executable
programs.

The manual programming systems involve text-based programming and
graphical interfaces. In text-based programming, a user develops a pro-
gram code using either a controller-specific programming language or
extensions of a high-level multipurpose language, for example, C++ or Java
(Kanayama and Wu, 2000; Hopler and Otter, 2001; Thamma et al., 2004).
In both cases, developing the program code is time-consuming and tedi-
ous. It requires a robot programming expert and an equipped program-
ming facility, and the outcomes rely on programmer’s abilities to
successfully encode the required robot performance. Moreover, since
robot manufacturers have developed proprietary programming languages,
in industrial environments with robots from different manufacturers,
programming robots would be even more expensive. The graphical
programming systems employ graphs, flowcharts, or diagrams as a
medium for creating a program code (Dai and Kampker, 2000; Bischoff
et al., 2002). In these systems, low-level robot actions are represented
by blocks or icons in a graphical interface. The user creates programs by
composing sequences of elementary operations through combination
of the graphical units. A subclass of the graphical programming systems
is the robotic simulators, which create a virtual model of the robot and
the working environment, whereby the virtual robot is employed for emu-
lating the motions of the actual robot (Rooks, 1997). Since the actual robot

Figure 1.1 Classification of robot programming methods. (Data from Biggs and
MacDonald (2003).)



1.2 Programming by Demonstration

is not utilized during the program development phase, this programming
method is referred to as off-line programming (OLP).

The conventional automatic programming systems employ a teach-
pendant or a panel for guiding the robot links through a set of states to
achieve desired goals. The robot’s joint positions recorded during the
teaching phase are used to create a program code for task execution.
Although programming by teach-pendants or panel decreases the level
of required expertise, when compared to the text-based programming sys-
tems, it still requires trained operators with high technical skills. Other
important limitations of the guided programming systems include the dif-
ficulties in programming tasks with high accuracy requirements, absence
of means for tasks generalizations or for transfer of the generated pro-
grams to different robots, etc.

The stated limitations of the conventional programming methods
inspired the emergence of a separate class of automatic programming sys-
tems, referred to as learning systems. The underlying idea of robot learn-
ing systems originates from the way we humans acquire new skills and
knowledge. Biggs and MacDonald (2003) classified these systems based
on the corresponding forms of learning and solving problems in cognitive
psychology: exploration, instruction, and observation. In exploration-
based systems, a robot learns a task with gradually improving the perfor-
mance by autonomous exploration. These systems are often based on
reinforcement learning techniques, which optimize a function of the
robot states and actions through assigning rewards for the undertaken
actions (Rosenstein and Barto, 2004; Thomaz and Breazeal, 2006; Luger,
2008). Instructive systems utilize a sequence of high-level instructions by a
human operator for executing preprogrammed robot actions. Gesture-
based (Voyles and Khosla, 1999), language-based (Lauria et al., 2002),
and multimodal communication (McGuire et al., 2002) approaches have
been implemented for programming robots using libraries of primitive
robot actions. Observation-based systems learn from observation of
another agent while executing the task. The PbD paradigm is associated
with the observation-based learning systems (Billard et al., 2008).

1.2 Programming by Demonstration

Robot PbD is an important topic in robotics with roots in the way human
beings ultimately expect to interact with a robotic system. Robot PbD
refers to automatic programming of robots by demonstrating sample
tasks and can be viewed as an intuitive way of transferring skill and tasks
knowledge to a robot. The term is often used interchangeably with
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learning by demonstration (LbD) and learning from demonstration (LfD)
(Argall et al., 2009; Konidaris et al., 2012). PbD has evolved as an inter-
disciplinary field of robotics, human-robot interaction (HRI), sensor
fusion, machine learning, machine vision, haptics, and motor control.
A few surveys of robot PbD are available in the literature (e.g., Argall
et al., 2009). PbD can be perceived as a class of supervised learning pro-
blems because the robot learner is presented with a set of labeled training
data, and it is required to infer an output function with the capability of
generalizing the function to new contexts. In the taxonomy of program-
ming approaches shown in Figure 1.1, PbD is a superior learning-based
approach. Compared to the exploration-based learning systems (as an
unsupervised learning problem), PbD systems reduce the search space
for solutions to a particular task, by relying on the task demonstrations.
The learning is also faster because the trial and errors associated with
the reinforcement methods are eliminated.

In summary, the main purpose in PbD is to overcome the major
obstacles for natural and intuitive way of programming robots, namely
lack of programming skills and scarcity of task knowledge. In industrial
settings, this translates to reduced time and cost of programming robots
by eliminating the involvement of a robot programmer. In interactive
robotic platforms, PbD systems can help to better understand the
mechanisms of HRI, which is central to social robotics challenges.
Moreover, PbD creates a collaborative environment in which humans
and robots participate in a teaching/learning process. Hence, PbD
can help in developing methods for robot control which integrate safe
operation and awareness of the human presence in human-robot col-
laborative tasks.

1.3 Historical Overview of Robot PbD

Approaches for automatic programming of robots emerged in the 1980s.
One of the earlier works was the research by Dufay and Latombe (1984)
who implemented inductive learning for the robot assembly tasks of
mating two parts. The assembly tasks in this work were described by
the geometric models of the parts, and their initial and final relations.
Synthesis of program codes in the robotic language was obtained from
training and inductive (planning) phases for sets of demonstrated trajec-
tories. In this pioneering work on learning from observation, the
sequences of states and actions were represented by flowcharts, where
the states described the relations between the mating parts and the sen-
sory conditions.
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Another early work on a similar topic is the assembly-plan-from-
observation (APO) method (Ikeuchi and Suehiro, 1993). The authors pre-
sented a method for learning assembly operations of polyhedral objects.
The APO paradigm comprises the following six main steps: temporal seg-
mentation of the observed process into meaningful subtasks, scene
objects recognition, recognition of performed assembly task, grasp recog-
nition of the manipulated objects, recognition of the global path of
manipulated objects for collision avoidance, and task instantiation for
reproducing the observed actions. The contact relations among the
manipulated objects and environmental objects were used as a basis for
constraining the relative objects movements. Abstract task models were
represented by sequences of elementary operations accompanied by sets
of relevant parameters (i.e., initial configurations of objects, grasp points,
and goal configurations).

Munch et al. (1994) elaborated on the role of the teacher as a key ele-
ment for successful task reproduction. The learning was accomplished
through recognition of elementary operations for the observed tasks.
The demonstrator supervised and guided the robot’s knowledge acquisi-
tion by (i) taking into considerations the structure of robot’s perceptibility
sensors when providing examples, (ii) taking part in preprocessing and
segmentation of the demonstrations, and (iii) evaluating the proposed
task solution.

Ogawara et al. (2002a) proposed to generate a task model from obser-
vations of multiple demonstrations of the same task, by extracting
particular relationships between the scene objects that are maintained
throughout all demonstrations. Each demonstration was represented as
a sequence of interactions among the user’s hand, a grasped object and
the environmental objects. The interactions that were observed in all
demonstrations were called essential interactions, whereas the variable
parts of the demonstrations called nonessential interactions were ignored
in the task planning step. Generalization across multiple demonstrations
was carried out by calculating the mean and variance of all trajectories for
the essential interactions. A robot program was generated from the mean
trajectory, and mapped to robot joints’ motors using an inverse kinemat-
ics controller.

The advancements in the fields of machine learning and artificial
intelligence in the past two decades produced an abundance of new
methods and approaches. This trend was reflected by the implementation
of approaches in robot PbD based on neural networks (Liu and
Asada, 1993; Billard and Hayes, 1999), fuzzy logic (Dillmann et al,
1995), statistical models (Yang et al., 1994; Tso and Liu, 1997; Calinon,
2009), regression techniques (Atkeson et al., 1997; Vijayakumar and
Schaal, 2000), etc.



