高考专题案卷系列丛书

本册主编 丛书顾问

高中课堂

学人生温温

高中课堂教学设计汇编 ——有机化学基础篇

丛书顾问 郭艳秋 丛书主编 张义武 本册主编 张燕萍

内容简介

本书是国家教育部高中新课标改革化学科目的一个选修模块。本书在学生已具备了有机化学初步知识的基础上,较系统全面地介绍了有机化学的内容。包括有机化合物的分类、结构、性质,重点介绍了烃和烃的衍生物部分的内容,简要阐述了生命活动中的有机化学。在高中新课标教学改革的背景下,本书按照教科书章节、课时顺序编写,每课时都配有阅读提纲、自主合作探究,后面附有达标检测。既适合学生自主学习,又适合老师教学使用。在典型例题的选择上,以近几年的高考题为主,精选各省市的模拟题,同时保留一些经典的传统题。既注重了基础的落实,同时又兼顾能力的提升。在新课改高考区此模块作为选考题出现。

图书在版编目 (CIP) 数据

高中课堂教学设计汇编. 有机化学基础篇 / 张燕萍主编. -- 北京: 北京邮电大学出版社, 2017. 6 ISBN 978-7-5635-5071-5

Ⅰ. ①高··· Ⅱ. ①张··· Ⅲ. ①机化学一课堂教学-教学研究-高中 Ⅳ. ①G633, 82中国版本图书馆 CIP 数据核字 (2017) 第 085159 号

书 名:高中课堂教学设计汇编──有机化学基础篇

著作责任者: 张燕萍 主编

责任编辑:满志文

出 版 发 行: 北京邮电大学出版社

社 址:北京市海淀区西土城路 10 号(邮编:100876) 发 行 部:电话:010-62282185 传真:010-62283578

E-mail: publish@bupt. edu. cn

经 销: 各地新华书店

印 刷:

开 本: 787 mm×1 092 mm 1/16

印 张: 8.75 字 数: 202 千字

版 次: 2017 年 6 月第 1 版 2017 年 6 月第 1 次印刷

ISBN 978-7-5635-5071-5

定 价:22.00元

• 如有印装质量问题,请与北京邮电大学出版社发行部联系 •

编委会

顾 问 郭艳秋

主 任 张义武

主 编 张燕萍

编 委 袁长伟 高丽环 邢庭庭

前言

在人类已知的化合物中,有机化合物占了绝大多数。与生命活动密切相关的有机化合物广泛存在于人类居住的地球上,使地球充满生机与活力。近年来,新合成的有机化合物数量以千万计,极大地丰富了我们的物质世界,满足了日益增长的社会需要,提高了人们对物质及其变化的认识。当今,有机化合物的应用已深入到人类生活的各个领域,因此,学习有机化合物对提高学生的科学素养有着重要的意义。

有机化学基础探讨有机化合物的组成、结构、性质及应用,学习有机化学研究的基本方法,了解有机化学对现代社会发展和科技进步的贡献。有机化学在中学化学中占有很重要的地位,高考中一般涉及两道题,通常一道是选择题,另一道是非选择的大题。其中大题牵扯的知识点比较多,且综合性也比较强,不仅考查有机化学的基础知识,更考查同学们思维能力中的知识统摄理解能力,知识的分解、迁移、重组能力,信息处理能力以及自学能力等,但不论怎么考,都必须以基础知识为根基。

为了适应普通高中新课程条件下的教学改革需要,大力推进我校的"自主活力课堂——三动一适应"课堂教学改革新模式,我们备课组策划并编写了人教版高中课程标准实验教科书——有机化学基础配套使用的教学辅导书。

全书按教科书的章节、课时顺序编排,每课时包括课程标准、学习目标、学习重点、学习难点、学习过程。其中学习过程包括:阅读提纲(设疑自探)、自主、合作、探究(典型例题)、知识建构(课堂笔记)、达标检测(基础题、能力题)。例题的选编以近几年的高考题和各省市典型模拟题为主,结合一些经典例题,紧扣大纲和课程标准,既注重了基础知识的落实,又注意到了高考的考查方向和要求。本书充分发挥小组合作探究的优势,让学生之间、师生之间互动有加,大大调动了学生学习的主动性和积极性,从而使重难点知识得以巩固和突破,达到举一反三、触类旁通的目的。检测题分层编排,满足了不同层次学生的要求,同时使整个知识体系趋于完整,结构框架更为合理。

由于时间仓促,本书的内容难免有不妥之处,希望广大同仁和使用本书的学生不吝赐教,提出宝贵意见和建议,以便我们及时修正,编者将不胜感激。

编 者 2017 年元月

目 录

第一章 认识有机化合物······	••••••	1
第一节 有机化合物的分类······		
第二节 有机化合物的结构特点		5
第三节 有机化合物的命名		
第四节 研究有机化合物的一般步骤和方法		
第二章 烃和卤代烃 ····································		
第一节 脂肪烃 第1课时		
脂肪烃 第2课时		
脂肪烃 第3课时		
第二节 芳香烃 第1课时		
芳香烃 第 2 课时		
第三节 卤代烃	····· 5	2
第三章 烃的含氧衍生物	5	7
第一节 醇酚 第1课时	5	7
醇酚 第 2 课时		
第二节 醛 第1课时		
醛 第2课时(习题课)		
第三节 羧酸 酯 第1课时		
第四节 有机合成		
第四章 生命中的基础有机化学物质 ·······	9	16
第一节 油脂	9	6
第二节 糖类		
第三节 蛋白质和核酸		
第五章 进入合成有机高分子化合物的时代	····· 11	.6
第一节 合成高分子化合物的基本方法	····· 11	6
第二节 应用广泛的高分子材料	····· 12	22
第三节 功能高分子材料	····· 12	27

第一节 有机化合物的分类

【课程标准】初步认识有机化合物的分类 知道官能团的名称和结构。

【学习目标】1援了解有机化合物的分类方法。

2援掌握常见官能团的结构。

3援体会科学分类法在认识事物和科学研究中的作用。

【学习重点】掌握常见官能团的结构。

【学习难点】掌握常见官能团的结构。

【学习过程】

一、阅读提纲

1援有机化合物的分类方法

有机化合物从结构上有两种分类方法:一是按照构成有机化合物分子的碳 来分类;二是按反映有机化合物特性的特定 来分类。

2援按照碳的骨架分类

	(如)	
有机化合物。	ʃ(如〇)	
	[_)

3援按官能团分类

(1) 烃的衍生物

烃分子中的 可以被其他 所取代 衍生出的一系列新的化合物。

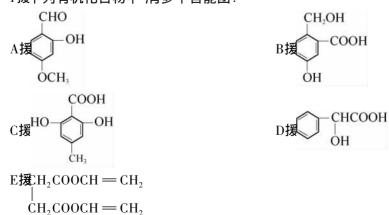
- (2) 官能团 决定有机化合物特殊性质的 或。
- (3) 常见有机物的类别和官能团的关系

类别	官能团的结构及名称
烷烃	
烯烃	
炔烃	
芳香烃	
卤代烃	—X(X表示卤素原子)
醚	

续表

类别	官能团的结构及名称
醇	
酌分	
醛	
酮	
羧酸	
酯	

二、自主、合作、探究


【典型例题】

B援属于芳香化合物

- 2援下列说法中正确的是()。
- A援含有羟基的化合物一定属于醇类
- B援代表醇类的官能团是跟链烃基相连的羟基
- C 援醇类和酚类具有相同的官能团 因而具有相同的化学性质
- D援分子内有苯环和羟基的化合物一定是酚类

【变式训练】

1援下列有机化合物中 有多个官能团:

(1) 可以看成醇类的是	_(填入字母序号,下同);
(2) 可以看成酚类的是	_;
(3) 可以看成羧酸类的是	;
(4) 可以看成酯类的是	°
2援下列物质中 属于酚类的是() 。
A援 CH₂OH	B援 CH ₃
C援 CH ₂ CH ₂	D援()OH
三、知识建构	
(课堂笔记等)	

四、达标检测			
基础题			
1援下列有机物是按	照碳的骨架进行分类的	是()。	
A援烷烃	B援烯烃	C援芳香烃	D援卤代烃
2援下列属于芳香化	合物的是()。		
A援	B援__CH2CH3	C援\NO ₂	D援 () —CH ₃
3援下列关于官能团	的判断中说法错误的是	()。	
A援醇的官能团是羟	B基(─OH)	B接羧酸的官能因	団是羟基(一OH)
C援酚的官能团是羟	基(一OH)	D援烯烃的官能因	团是碳碳双键
4援四氯化碳按官能	团分类应该属于()	•	
A援烷烃	B接烯烃	C援卤代烃	D 接 羧酸
5援下列化合物中 "	属于酚类的是()。		
A援∕CH₂—OH		B援CH;————O	Н
C援 一 OH		D援CH3一〇一O	Н
能力题			
1援下列分子中的官	能团相同的是()。		
_ -c	ООН 	О Н—С—О—Н	C_2H_5OH
1	2	3	4
A援①和②	B援3和4	C援①和③	D援2和④

2援北京奥运会期间对大量盆栽鲜花施用了 S--诱抗素制剂 ,以保证鲜花盛开 ,S--诱抗素的分子结构如下图所示 ,下列关于该分子的说法正确的是()。

A援含有碳碳双键、羟基、羰基、羧基

B援含有苯环、羟基、羰基、羧基

C援含有羟基、羰基、羧基、酯基

D援含有碳碳双键、苯环、羟基、羰基

3 援历史上最早应用的还原性染料是靛蓝 ,其结构简式如下图所示 ,下列关于靛蓝的 叙述中错误的是()。

$$\bigcup_{\substack{l\\ C\\ C\\ O\\ H}} \begin{matrix} H\\ O\\ H \end{matrix} \bigcup_{\substack{l\\ C\\ C\\ H}} \begin{matrix} O\\ \\ \\ \\ \\ \\ \\ \end{matrix}$$

- A接靛蓝由碳、氢、氧、氮四种元素组成
- B援它的分子式是 C₁₆H₁₀N₂O₂
- C援它可以在一定条件下与氢气发生加成反应
- D援它不能使酸性高锰酸钾溶液褪色

4援分析下列有机物的结构简式 指出它们分别含有哪些官能团?写出这些官能团的 名称及结构简式。

(1)
$$CH_2CH = CHCHCOOH$$
 CH_3

(2)
$$\bigcirc$$
 CH_2 $\stackrel{O}{\subset}$ CH_2

第二节 有机化合物的结构特点

【课程标准】	知道有机化合物的结构特点。
【学习目标】	1援了解有机化合物中碳原子的成键特点。

- 2援知道有机化合物中存在同分异构现象。
- 3援能书写简单有机化合物的同分异构体,会判断同分异构体。
- 4援知道有机化合物分子结构的不同表示方法。

【学习重点】能书写简单有机化合物的同分异构体。会判断同分异构体。

【学习难点】同分异构体的书写。

【学习过程】

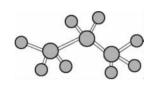
— 、	阅读提纲
------------	------

1 援碳原子的结构及成键特点 碳原子的最外层有个电子 个共价键。	,很难得失电子	,易与碳原子	² 或其他原子形成
(1) 碳原子之间可以结合成	_、	o	
(2) 多个碳原子间可以相互结合成_			
3援甲烷的分子结构			

分子式	结构式	电子式	空间构型	结构示意图
				H.
				H
				Н

△ 垤右 扣 仏	公 合物的同分异构现	免		
+1女円小川	· ㅁ 柳미기미기 开始状	3 K		
(1) 同分	异构现象			
化合物具	有相同的 ;	旦不同	因而产生了_	上的差异的现象。
(2) 同分	异构体			
具有	的化合物互为	司分异构体。		
(3) 常见	的同分异构现象			
常见的同	分异构现象包括		和	_°
互为同分	异构体的有机物的	生质是否相同?		

认识有机化合物


5援同分异构体的书写方法

书写 C₆H₁₄的同分异构体,体会烷烃同分异构体的书写方法。

二、自主、合作、探究

【曲型例题】

1援下列化学用语表达不正确的是()。

- ① 图为丙烷的球棍模型
- ② 丙烯的结构简式为 CH₃CHCH₃
- ③ 某有机物的名称是 2 3—二甲基戊烷
- ④《》—C=CH与 C₈H₆互为同分异构体

A援①②

B援2③

C援3(4)

D援2(4)

2援下列有机物结构的表示方法不正确的是()。

A援异戊烷的球棍模型:

B援乙醇的比例模型: 🞑

C援丙烯的结构简式: CH, CHCH,

D援四氯化碳的电子式::CI:CI:CI:CI

【变式训练】

1援下列有机物中,所有的碳原子不可能都共面的是(

2援下列物质中 在一定条件下既能发生加成反应 又能发生取代反应 但不能使酸性 KMnO₄溶液褪色的是()。

A援乙烷

B援苯

C援乙烯

D援乙醇

3援某共价化合物含 C、H、N 三种元素 分子内有四个氮原子 且四个氮原子排列成内 空的四面体(如白磷的结构),每两个氮原子间都有一个碳原子。已知分子内无碳碳单 键 ,也没有碳碳双键 则该化合物的分子式为() 。

A援CH。N₄

B援C₆H₁₂N₄

C援C₆H₁₀N₄

4援某链状有机物分子中含有 n 个— $\mathrm{CH_2}$ — ,m 个 — CH — ,a 个— $\mathrm{CH_3}$,其余为 一OH 则羟基的个数为()。

A援2n + 3m 原a B援m + 2 原a

C援n+m+a D援m+2n+2 原a

三、知识建构

(课堂笔记等)

四、达标检测

基础题

1援工业上用改进汽油组成的办法来改善汽油的燃烧性能,例如:在汽油中加入 $CH_{3}OC(CH_{3})_{3}$ 来生产无铅汽油。 $CH_{3}OC(CH_{3})_{3}$ 分子中必存在的原子间连接形式是()。

2援下列结构简式一定错误的是(

A援CH,F

B援CH、一N一NH、

C援C,H,SH

) 。

3援能够证明甲烷构型是正四面体的事实是(

A援甲烷的四个键键能相同

B援甲烷的四个键键长相等

C援甲烷的所有 C—H 键键角相等

D援二氯甲烷没有同分异构体

A援具有相同的相对分子质量

4援互称为同分异构体的物质不可能()。

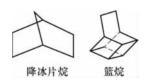
	C援具有相		1 - + - - + - - - 			
			物的结构简式:	© CH C		т
	(I) CH ₃ CH	=CHCH ₂ CH ₃			H—CH ₂ —CH—CI	1_2
				CI		
	$3 CH_3CH_2$	CH_2CH_2OH		④ CH ₃ —C≡	3	
	⑤ CH ₃ —C	H_2 — C = CH		⑥ CH ₃ —CH	H — CH_2CH_3	
				ÓI	H	
	⑦ CH ₃ CH ₂	CH_2OCH_3		8		
	9 CH₂ =C	СН—СН —СН	-2	\bigcirc CH ₂ ==C	HCH ₂ CH ₂ CH ₃	
	(1) 属于同	引分异构体的是	른			
	(2) 官能团]位置不同的同	 引分异构体是			
	(, , , , , , , , , , , , , , , , , , ,					0
	(3)官能团	类型不同的同]分异构体是			
						0
	6援写出 C ₄	H_s 所有的同分	·异构体。			
	能力题					
		と合物中 一个	、碳原子与其他原子	2不能同时形	成的化学键是() 。
	A援四个共		吸水。一头吃水。	B援一个双锁	,	<i>)</i> °
		键 ,一个双键		D援一个单钮		
		述正确的是() 。		-, , — "-	
	A援分子式	相同 ,元素百分	分含量也相同的物质	质是同种物质		
	B援通式相	司的不同物质	一定属于同系物			
	C援分子式	相同结构不同	的物质一定是同分	·异构体		
	D援相对分·	子质量相同的	不同物质一定是同]分异构体		
	3援甲烷与氯	氯气发生取代.	反应 ,生成的四种?	不同的氯代物	中,分子结构为]	E四面体型
的是	∄()。					
	A援CH ₃ Cl	B	爰 CH_2Cl_2	C援CHCl ₃	D援CCl	-4
			同分异构体的是() 。		
	A援 ¹² C 与 ¹³					
	B援CH ₄ 与($CH_3CH_2CH_3$				
• 8	8 •	自主活力课堂	"三动一适应"	生动 主动		

B援具有相同的结构

A援2种 B援3 种 C援4种 D援5 种 8援已知丙烷的二氯代物有4种同分异构体则六氯丙烷的同分异构体数目为()。

A援2种 B援和 C接4种 D援 种

9援柠檬烯是一种食用香料,其结构简式如下图所示。下列有关柠檬烯的说法正确的 是()。


A援它的一氯代物有6种

B援它的分子中所有的碳原子一定在同一平面上

C援它和丁基苯(《 》—C.H.) 互为同分异构体

D援一定条件下,它可以发生加成、取代、氧化、还原等反应

10援如下图所示都是简化的碳架结构:

- (1) 其分子式分别是
- (2) 降冰片烷发生一氯取代时 取代位置有
- (3) 篮烷发生一氯取代时 其一氯代物有

11援烷烃分子可看成是由—CH₃、—CH₂—、—CH-

果某烷烃分子中同时存在这4种结构,所含碳原子数又最少,这种烷烃分子应含

个碳原子,其结构简式可能为_ 或。	
	③CH ₃ CH ₂ OH ④CH ₃ COOH ⑤聚乙烯五种物质中:
(1) 能使 Br ₂ 的 CCl ₄ 溶液褪	是色的是;
(2) 属于高分子化合物的是	륃;
(3) 能与 Na ₂ CO ₃ 溶液反应	的是;
(4) 能发生酯化反应的是_	;
(5) 既能发生取代反应又能发生加成反应的是。	
13摄碳原子最外电子层含有	
以跟其他非金属原子形成	个键 ,而且碳原子之间也能以键相
结合 形成键、	_键或键,连接成稳定的长短不一的碳链或含碳
原子数目不等的碳环 从而导致	有机物种类纷繁 数量庞大。
14援0 是一系	中驱虫药——山道年的结构简式,试确定其分子式为
指出其含有的官能团	的名称。
15援有机化合物的结构简式可进一步简化 ,如	
$CH_3CH_2CH_2CH_3$, (
	$ m CH_3$
$CH_3CH = CHCH_3$	
写出下列物质的分子式:	
(1);	
$(2) \qquad \qquad ;$	
(3);	
(4)	

第三节 有机化合物的命名

【课程标准】能根据有机化合物命名规则命名简单的有机化合物。

【学习目标】1接了解习惯命名法和系统命名法。

2援学会用系统命名法命名烷烃类物质。

3援了解烯烃、炔烃、苯的同系物的命名方法。

【学习重点】烷烃的系统命名法。

【学习难点】命名与结构式间的关系。

【学习过程】

一、阅读提纲

1援[复习]

(1) 什么是烃基? 什么是烷基?

(2) 烃基的特点

烃基中短线表示_____;烃基是电中性的 不能独立存在。

- (3) 丁烷失去一个氢原子后的丁基可能有几种结构?
- 2援烷烃的命名
- (1) 习惯命名法

正戊烷 异戊烷 新戊烷。

- (2) 系统命名法
- a摆命名步骤
- ① 定主链 最长称"某烷"。
- ② 编号 最简最近定支链所在的位置。
- ③ 把支链作为取代基 从简到繁 相同合并。
- ④ 当有相同的取代基 则相加 然后用大写的二、三、四等数字表示写在取代基前面。
- b援名称组成: 取代基位置——取代基名称——母体名称。
- c摄文意义:阿拉伯数字——取代基位置。

汉字数字——相同取代基的个数。

d援命名原则:长──近──多──小──简。

3援烯烃和炔烃的命名

命名步骤:

- ① 选主链:将含有双键或三键的最长碳链作为主链 称为"某烯"或"某炔"。
- ② 编号数:从距离双键或三键最近的一端给主链上的碳原子依次编号定位。
- ③ 写名称:把支链作为取代基 从简到繁 相同合并;用阿拉伯数字标明双键或三键的位置(只需标明双键或三键碳原子编号较小的数字)。用"二""三"等表示双键或三键的个数。