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An overview of IGCC systems

Ting Wang
University of New Orleans, New Orleans, LA, United States

1.1 Introduction of IGCC

IGCC is an acronym for Integrated Gasification Combined Cycle. The major purpose of
IGCC is to use hydrocarbon fuels in solid or liquid phases to produce electrical power
in a cleaner and more efficient way via gasification, compared to directly combusting
the fuels. The hydrocarbon fuels typically include coal, biomass, refinery bottom resi-
dues (such as petroleum coke, asphalt, visbreaker tar, etc.), and municipal wastes. The
approach to achieve a “cleaner” production of power is to convert solid/liquid fuels to gas
first, so that they can be cleaned before they are burned by removing mainly particulates,
sulfur, mercury, and other trace elements. The cleaned gas, called synthetic or synthesis
gas (syngas), which primarily consists of carbon monoxide (CO) and hydrogen (H,),
can then be sent to a conventional combined cycle to produce electricity. A simplified
IGCC process diagram comprising three major “islands”—gasification, gas cleanup,
and power—is shown in Fig. 1.1. The ultimate goal for IGCC is to achieve a lower cost
of electricity (COE) than conventional pulverized coal (PC) power plants and/or to be
competitive with natural gas-fired combined-cycle systems with comparable emissions.

While “clean” power generation is the primary driving motivation for entering the
business of IGCC, “increasing plant efficiency” to a level higher than that of PC plants
is the second driving motivation. To achieve higher efficiency, “integration” between
sub-systems becomes necessary. Integration consists of all aspects of the operation,
including mechanical, thermal, and dynamic process control. For example, mechani-
cal integration can be achieved between the compressor of the gas turbine (GT) and
the air separation unit (ASU), aiming to save some compression power.

Thermal integration can be implemented by strategically interconnecting the vari-
ous grades of steam generated during the syngas cooling, gas cleanup, and/or water-
gas shift processes with the heat recovery steam generator (HRSG) and the steam
turbine system. Full air integration does enhance the overall plant efficiency posi-
tively by about three to four percentage points, but it also increases the complexity of
construction, operation, and maintenance, which may result in increased potential for
construction phase delay and/or cost overrun, increased maintenance, lost availability,
and degraded reliability. Thus, the concept of nonintegrated IGCC has been advocated
by some developers to trade reduced efficiency for higher availability and reliability,
even though the term “nonintegrated IGCC” could be confusing.

When the potential of global warming became a concern, the emission of carbon
dioxide (CO,)—a greenhouse gas (GHG)—from power plants was subjected to

Integrated Gasification Combined Cycle IGCC) Technologies. DOT: http:/dx.doi.org/10.1016/B978-0-08-100167-7.00001-9
© 2017 Elsevier Ltd. All rights reserved.
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Figure 1.1 Simplified block diagram of an IGCC system.

stringent scrutinization and regulations. Usually, there are three ways to reduce CO,
emissions: by increasing the overall system efficiency, capturing a portion of the CO,
and sequestering it, called CCS (Carbon Capture and Sequestration), or utilizing the
captured CO, multiple times. The syngas generated via the gasification process can
be more readily separated into highly concentrated H, and CO, through the water-gas
shift (WGS) process (to be explained later) before the combustion stage (i.e., pre-
combustion) in an IGCC system, as opposed to PC power plants, which have to use
a post-combustion carbon capture method. It is significantly cheaper to perform pre-
combustion carbon capture in an IGCC system than post-combustion carbon capture
in a PC power plant due to the nature of the processes involved and the reduced size of
equipment. CCS imposes a severe penalty on power output, plant efficiency, and COE.

The objective of this chapter is to provide an introduction of the complete IGCC
system, allowing readers quickly to obtain an overall view of the IGCC system,
leaving the details in each subsequent chapters, each focusing on a specific subject.
Although the gasification process can be applied to various carbon fuels, since the
major developments and applications have involved coal, the descriptions and expla-
nations in this chapter are written with coal in mind as the major feedstock unless
specified.
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1.2 Layouts of key IGCC components and processes

For the convenience of explaining the IGCC systems with information of some of
the flow’s thermodynamic properties, the flow system diagrams obtained from an
academic simulation of an IGCC plant are used. The simulation was performed using
the commercial software, GT Pro, a part of the program suite, Thermoflow. The plant
was designed to generate about 240 MWe of net power output, using Texas lignite
as feedstock. The results of these simulated IGCC plants have been documented by
Wang and Long (2012a, 2012b, and 2014). Two systems were simulated in Wang
and Long’s papers. The result of the one with a lower steam turbine inlet pressure
(1100psi/76bar) and temperature (538°C/1000°F) is used in this chapter. Fig. 1.2
shows the general layout of the baseline case with and without CCS.

The feedstock is the South Hallsville Texas Lignite with a feeding rate of 4308
tons/day. The reason of using the Texas Lignite is because the simulate plant is located
in Louisiana and Texas Lignite is close by. The coal is mixed with 35% water by weight
to form a slurry, which is injected into a GE entrained flow gasifier together with 95%
pure oxygen provided by the air separation unit (ASU). The syngas coming out of the
gasifier needs to be cooled down to meet the operating conditions of the currently avail-
able gas cleanup system. Typically, either a radiant syngas cooler or a quench cooling
method can be used, followed by several traditional convective heat exchanger coolers.
The gas cleanup system consists of a scrubber to remove particulates and other soluble
contaminants, such as hydrogen cyanide (HCN), ammonia (NHj3), and hydrochloric
acid (HCI). The slight amount of carbonyl sulfide (COS) in the syngas is converted to
hydrogen sulfide (H,S) through COS hydrolysis. The syngas needs to be further cooled
down to near the ambient temperature before it enters the Acid Gas Removal (AGR)
unit. The heat released from the cooling process between the exit of the gasifier and the
inlet of the AGR unit is used to generate superheated steam and hot water at various
pressures.

The cleaned syngas is sent to the GT to generate electricity. The exhaust of the GT
is at about 593°C (1100°F), which has sufficient energy to generate steam through a
Heat Recovery Steam Generator (HRSG). The steam generated through the HRSG is
combined with steam generated through the syngas cooling process to drive a steam
turbine and generate additional electricity. This is identical to a conventional combined
cycle. In this example here, a GE quench-type gasifier is used. The power block consists
of a single GT, modeled after the Siemens SGT6-4000F turbine, with steam injection in
the combustor to reduce NO, formation, and a single ST, with a fixed steam inlet pres-
sure and temperature of 1100psi (76bar) and 538°C (1000°F), respectively. The steam
is reheated to 538°C (1000°F) at 174.5psi (11.87 bar) to increase the output power and
efficiency of the bottom steam cycle. The plant is designed exclusively for power gener-
ation, so no chemicals or energy gases are exported anywhere in the middle of cleanup.

If carbon capture is needed in a system that was initially designed without consid-
ering carbon capture, a post-combustion carbon capture system (shown as an inset in
Fig. 1.2) can be implemented at the exhaust gas side exit of the HRSG. The carbon
capture system makes use of an amine-based solvent to separate the CO, from the
rest of the GT exhaust. The cost of using a post-combustion carbon capture system is
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