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Preface

This book has been written to be of use to scientists working in the theory of graph
spectra. It may also attract the attention of graduate students dealing with the same
subject area as well as all those who use graph spectra in their research, in particular,
computer scientists, chemists, physicists or electrical engineers.

In the entire book we investigate exactly one class of graphs (regular) by using
exactly one approach (spectral), that is we study eigenvalues and eigenvectors of a
graph matrix and their interconnections with the structure and other invariants. Reg-
ular graphs appear in numerous sources. In particular, they can probably be encoun-
tered in all the books concerning graph theory. An intriguing phenomenon is that, in
many situations, regular graphs are met as extremal, exceptional or unique graphs
with a given property. More tangibly, an inequality is attained for a regular graph or
a claim holds unless a graph under consideration is regular or it does hold exactly
for regular graphs. In other words, depending on a given problem they fluctuate from
one amplitude to another, which is making them probably the most investigated and
the most important class of graphs, and simultaneously motivating us to consider the
theory of graph spectra through the prism of regular graphs. There is also a relevance
of regular graphs in the study of other discrete structures such as linear spaces or
block designs. A final motivation for this book is a remarkable significance of regu-
lar graphs in branches of computer science, chemistry, physics and other disciplines
that consider processes dealing with graph-like objects with high regularity and many
symmetries.

The rapid development of graph theory in last decades caused an inability to cover
all relevant results even if we restrict ourselves to a singular approach, so we must
say that this material represents a narrowed selection of (in most cases, known) re-
sults. Our intention was to include classical results concerning the spectra of regular
graphs along with recent developments. Occasionally, possible applications are indi-
cated. The terminology and notation are taken from our previous book [290]. This book
was written to be as self-contained as possible, but we assume a decent mathematical
knowledge, especially in algebra and the theory of graph spectra.

Here is a brief outline of the contents. Chapter 1 is preparatory. In Chapter 2 we fo-
cus on basic properties of the spectra of regular graphs. In Chapter 3 we pay attention
to some particular types of regular graph. Graph products, walk-regular graphs, differ-
ent subclasses of distance-regular graphs, regular graphs of line systems and various
block designs occupy the central place of this chapter. In Chapter 4 we consider the
problem of determining regular graphs that satisfy fixed spectral constraints. There,
we mostly deal with regular graphs with bounded least or second largest eigenvalue,
those with integral spectrum or a comparatively small number of distinct eigenval-
ues. Cospectrality of regular graphs is also considered. Chapter 5 deals with a single
subclass of regular graphs called expanders. Expanders have an enormous number
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of surprising properties making them relevant in mathematics and other contexts.
We consider the three different approaches to these graphs, their constructions and
applications in the coding theory. For almost all standard square matrices associated
with graphs, the spectrum of one of them contains full information about the spec-
trum of the remaining ones whenever a graph under consideration is regular, which
means that in the major part of the research there is no difference which matrix we are
dealing with. An exception is the distance matrix which is the subject of Chapter 6.

Observing the table of contents, the reader may notice that expanders explored in
Chapter 5 can be considered as a part of Chapter 3. The reasons for separating them in
a single chapter are the quite different approach they require and the size of the pre-
sented material. Many results presented in Chapter 4 are based on those of Chapter 3
which motivated us to set these two chapters next to one another.

All chapters are divided into sections and some sections are divided into subsec-
tions. The reader will also notice the existence of paragraphs that occur irrespectively
of the above hierarchy.

Each of the Chapters 2-6 contains theoretical results, comments (including ad-
ditional explanations or possible applications), examples and exercises. Some of the
results presented in these chapters can be found in other books concerning the theory
of graph spectra. In particular, the books [49, 87, 89] cover some parts of Chapter 2.
Some results of Chapter 3 can be found in [48] (especially those related to distance-
regular graphs), [145] (strongly regular graphs, Kneser graphs, line systems), [94] (line
systems, star complements) or [62] (block designs). The book [94] also covers a smaller
part of Chapter 4. Chapter 5 is partially covered by [113]. For details that are not pre-
sented here, we recommend some of these books.

The author is grateful to Tamara Koledin who read parts of the manuscript and
gave valuable suggestions, and to Sebastian Cioaba, Drago$ Cvetkovi¢, Edwin R. van
Dam, Willem H. Haemers, Tamara Koledin again and Peter Rowlinson for permissions
to reproduce some of their proofs without significant change. Finally, Nancy Christ,
Apostolos Damialis and Nadja Schedensack on behalf of the publisher helped with
editing the book by answering a lot of questions, which is much appreciated.

Last but not least, the author apologizes in advance for possible misprints or com-
putational errors as well as for the inconvenience these might cause to the reader.
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1 Introduction

Here we give a survey of the main graph-theoretic terminology, notation and neces-
sary results. The presentation is separated into three sections. In the first two we deal
with graph structure and give some observations including statistical data on regular
graphs. In the third section we focus on the adjacency matrix and the corresponding
spectrum.

Since all parts of this chapter can be found in numerous sources, by the assump-
tion that the reader is familiar with most of the concepts presented, we orientate to a
brief but very clear and intuitive exposition. More details are given in the introductory
chapter of our previous book [290].

1.1 Terminology and notation

Vertices and edges

Let G be a finite undirected simple graph (so, without loops or multiple edges). We de-
note its set of vertices (resp. edges) by V or V(G) (resp. E or E(G)). In addition, we
assume that |V| # 0. The quantities n = |V| and m = |E| are called the order and the
size of G, respectively. Two vertices u and v are adjacent (or neighbours) if they are
joined by an edge. In this case we write u ~ v and say that the edge uv is incident with
vertices u and v. Similarly, two edges are adjacent if they are incident with a common
vertex.

The set of neighbours (or the neighbourhood) of a vertex v is denoted N(v).
The closed neighbourhood of v is denoted N[v] (= {v} U N(v)).

Two graphs G and H are said to be isomorphic if there is a bijection between sets
of their vertices which respects adjacencies. If so, then we write G = H. Observe that
the graphs illustrated in Figure 1.1 are isomorphic. In particular, an automorphism of
a graph is an isomorphism to itself.

The degree d, of a vertex v is the number of edges incident with it. The minimal
and the maximal vertex degrees in a graph are denoted 6 and A, respectively. A vertex
of degree 11is called an endvertex or a pendant vertex.

We say that a graph G is regular of degree r if all its vertices have degree r. If so,
then G is referred to as r-regular. In particular, a 3-regular graph is called a cubic graph.

The complete graph with n vertices K, is the unique (n — 1)-regular graph. Sim-
ilarly, the cocktail party CP(n) is the unique (2n — 2)-regular graph with 2n (n > 1)
vertices. The complete graph K is called the trivial graph.

The r-dimensional cube Q, is an r-regular graph of order 2" with the vertex
set V(Q,) = {0, 1}" (all possible bhinary r-tuples) in which two vertices are adjacent
if they differ in exactly one coordinate (see Figure 1.1).
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Fig. 1.1. Two illustrations of the 4-dimensional cube.

The edge degree of an edge uv is defined as equal to d;, + d, — 2. In other words, it is
the number of edges adjacent to uv. Similarly to the above, a graph is edge-regular of
degree s if all its edges have degree s.

A matching in a graph is a set of edges such that any vertex in a graph is incident
with at most one edge of a matching. We say that a matching is perfect if every vertex
is incident with an edge from the matching.

Induced subgraphs and subgraphs

An induced subgraph of a graph G is any graph H obtained by deleting some vertices
(together with their edges incident). A graph G is H-free if it does not contain H as
an induced subgraph. A subgraph of G is any graph H satisfying V(H) ¢ V(G) and
E(H) ¢ E(G). In particular, if V(H) = V(G) then H is called a spanning subgraph of G.

If S ¢ V(G), then we write G[S] to denote the induced subgraph of G with vertex
set S in which two vertices are adjacent if and only if they are adjacent in G. For short,
G - v (resp. G — e) designates the induced subgraph (resp. subgraph) obtained by
deleting a single vertex v (resp. edge e). We call it a vertex-deleted (resp. edge-deleted)
subgraph.

If S and T are disjoint subsets of V(G), then m(S) and m(S, T) stand for the num-
ber of edges in G[S] and the number of edges with one end in S and the other in T,
respectively.

A cligue is any complete induced subgraph of a graph G. The cligue number w is
the number of vertices in the largest clique of G. Similarly, a co-cligue is any induced
subgraph without edges. The vertices of a co-clique make an independent set of ver-
tices of G, while the number of vertices in the largest independent set is called the
independence number and denoted a.
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Walks and connectivity

A k-walk (or simply, walk) in a graph G is a sequence of alternate vertices and edges
V1, €1, V2, €2, ..., €k 1, Vk such that, for 1 < i < k — 1, the vertices v; and v;;, are
distinct ends of the edge e;. A walk is closed if v; coincides with vi. The number of
k-walks is denoted wy, while the number of closed k-walks starting at vertex v is de-
noted w(v). The length of a walk is equal to the number of its edges.

Remark 1.1.1. We suggest to the reader to remember that in this book the parameter k
denotes the number of vertices in a k-walk, while its length is then equal to k — 1.

A path is a walk in which all vertices are mutually distinct. A graph which is itself a
path with n vertices is denoted P,. There is a special case of a path consisting of a
single vertex (i.e., P; = K;). A vertex of minimal degree in P, is called an end of P,.
By inserting an edge between the ends of P, (n > 3), we get a cycle Cy. The cycle C3
is known as a triangle, C4 is known as a quadrangle, and so on. Since all paths and
cycles are particular walks, the length of a path or a cycle is equal to the number of its
edges. A graph with n vertices is Hamiltonian if it contains C,, as a spanning subgraph.
Any such cycle is referred to as a Hamiltonian cycle.

Wesay that a graph G is connected if every two (not necessary distinct) vertices are
the ends of at least one path in G. Otherwise, we say that G is disconnected. Maximal
connected induced subgraphs of a disconnected graph are referred to as its compo-
nents. A component consisting of a single vertex is called an isolated vertex of a graph,
while a graph consisting entirely of (at least two) isolated vertices is called totally dis-
connected.

A tree is a connected graph that does not contain any cycle (as a subgraph). Obvi-
ously, the number of edges m of any tree equals n — 1.

The vertex (resp. edge) connectivity c, (resp. ce) of a connected graph is the mini-
mal number of vertices (resp. edges) whose removal results in a trivial or disconnected
graph.

The distance d(u, v) between (not necessary distinct) vertices u and v belonging to
the same component is the length of the shortest path between u and v. The diameter
of a connected graph G is defined by D = max{d(u,v) : u,v € V(G)} (ie., it is the
longest distance between two vertices of G). The girth g is the length of the shortest
cycle induced in G.

Colouring and bipartite graphs

A graph G is k-colourable ifits vertices can be properly coloured (i.e., in such a way that
two adjacent vertices are coloured by different colours) by k colours. The chromatic
number y is the minimal value of k such that G is k-colourable.

A graph G is called bipartite if its chromatic number is 1 or 2. Obviously, y(G) = 1
holds if and only if E(G) = 0. The vertex set of a bipartite graph can be partitioned
into two parts (or colour classes) X and Y in such a way that every edge of G joins a
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Fig. 1.2. Cubic graph 2C3 and its 4-regular line graph.

vertex in X with a vertex in Y. Observe that there is a unique partition whenever G is
connected (on up to interchanging the roles of X and Y). A graph is called complete bi-
partiteif every vertex in one part is adjacent to every vertex in the other part. If | X| = ny
and |Y| = n,, the complete bipartite graph is denoted Kp, »,. In particular, if at least
one of the parameters is equal to 1, it is called a star. A vertex with maximal degree
in the star Ky -1 is called the centre. We use K, , to denote the graph obtained by
removing a perfect matching from K .

More general, a k-partite graph is a graph whose set of vertices can be partitioned
into k parts such that no two vertices in the same part are adjacent. If there is an edge
between every pair of vertices belonging to different parts, the graph is referred to as
a complete k-partite or, if k is suppressed, a complete multipartite.

A graph is called bipartite semiregular if it is bipartite and the vertices belonging
to the same part have equal degree. If the corresponding vertex degrees are r and s,
then the graph is referred to as a bipattite (r, s)-semiregular.

Certain operations

For two graphs G and H we define G U H to be their disjoint union. We also use kG
to denote the disjoint union of k copies of G. The join GVH is the graph obtained by
inserting an edge between every vertex of G and every vertex of H. This operation
may be applied to a sequence of graphs G1, G, . . ., Gk. In that case we usually write
G1VGyV---VGy.

The complement of a graph G is the graph G with the same vertex set as G, in
which any two distinct vertices are adjacent if and only if they are non-adjacent in
G. Observe that if G is disconnected, then G must be connected. If G is bipartite with
parts X and Y, then its bipartite complement is the bipartite graph G with the same
parts having the edge between X and Y exactly where G does not.

A multigraph includes the possible existence of loops or multiple edges. All previ-
ous numerical invariants can be defined for multigraphs in a similar way.



