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Preface

For given data, learning algorithms are usually designed to charac-
terize the intrinsic relationship between the input and its output value.
For different learning tasks (e.g., regression, classification, and ranking),
various learning methods under different frameworks (e.g., Tikhonov
regularization, greedy approximation, and neural networks) have been
proposed and show well performance in real-word applications. Besides
empirical evaluations, the theoretical foundations of learning algorithms
are crucial to better understand its prediction mechanism, and then
give us insights to further improve its performance. To attain this goal,
learning theory (e.g., consistency, generalization, and robustness) has at-
tracted much attentions in machine learning literatures, which involves
the analysis techniques associated with statistics, approximation theory,
and optimization. Ideas from all these areas have been brought together
in a coherent and natural way to form a subject on machine learning
theory.

This book aims to give some theory results for learning to regres-
sion, ranking and classification, with a focus on the generalization error
analysis of learning algorithms. Special emphasises include regularized
kernel methods, stochastic gradient descent method, greedy algorithms,
and random weighted networks. To support the theoretical analysis, I
also present the empirical evaluations on simulated and real data. As
there are various learning problems and models, we try to each chapter
focuses on one learning task and each section is self-containment.

I am indebted to Dr Bigin Song, Dr Zhibin Pan, Dr Yi Tang, Dr
Jiangtao Peng, Dr Fangchao He, Dr Yulong Wang, and Dr Tieliang Gong
for their valuable feedback and suggestion. Much of the material in this
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book comes from our joint papers. I am indebted to Suping Gu and
the staff of Wuhan University Press for their patience and willingness
to help. I have also been supported by the National Natural Science
Foundation of China (NSFC) under grant nos. 11671161,11626107, by
the Teaching Research Project of Hubei Province (2016167), and by the
Fundamental Research Funds for the Central Universities under Grants
2662015PY046, 2014PY025.
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Chapter 1

Learning to Regression: Error Analysis and Appli-
cations

In this chapter, we mainly consider the following topics:

o We consider the multi-kernel regularized regression (MKRR) algo-
rithm associated with least square loss over reproducing kernel
Hilbert spaces. We provide an error analysis for the MKRR al-
gorithm based on the Rademacher chaos complexity and iteration
techniques. The main result is an explicit learning rate for the MKRR
algorithm. Two examples are given to illustrate that the learning
rates are much improved compared to those in the literature.

» We propose a stochastic gradient descent algorithm for the least
square regression with coefficient regularization. An explicit expres-
sion of the solution via sampling operator and empirical integral
operator is derived. Learning rates are given in terms of the suitable
choices of the step size and regularization parameters.

o We propose a new greedy algorithm combining the semi-supervised
learning and the sparse representation with the data-dependent
hypothesis spaces. The proposed greedy algorithm is able to use
a small portion of the labeled and unlabeled data to represent the
target function, and to efficiently reduce the computational burden
of the semi-supervised learning. We establish the estimation of the
generalization error based on the empirical covering numbers. A
detail analysis shows that the error has O(n~!) decay. Our theoret-
ical result illustrates that the unlabeled data is useful to improve
the learning performance under mild conditions.



Chapter 1 Learning to Regression: Error Analysis and Applications

The correntropy-induced loss (C-loss) has been employed in learn-
ing algorithms to improve their robustness to non-Gaussian noise
and outliers recently. Despite its success on robust learning, only
little work has been done to study the generalization performance
of regularized regression with the C-loss. To enrich this theme, we
investigate a kernel-based regression algorithm with the C-loss and
/y-regularizer in data dependent hypothesis spaces. The asymptotic
learning rate is established for the proposed algorithm in terms of
novel error decomposition and capacity-based analysis technique.
The sparsity characterization of the derived predictor is studied
theoretically. Empirical evaluations demonstrate its advantages over
the related approaches.

Nystrém method has been used successfully to improve the compu-
tational efficiency of kernel ridge regression (KRR). Recently, theo-
retical analysis of Nystrom KRR, including generalization bound
and convergence rate, has been established based on reproduc-
ing kernel Hilbert space (RKHS) associated with the symmetric
positive semi-definite kernel. However, in real world applications,
RKHS is not always optimal and kernel function is not necessary
to be symmetric or positive semi-definite. Here, we consider the
generalized Nystrom kernel regression (GNKR) with ¢; coefficient
regularization, where the kernel just requires the continuity and
boundedness. Error analysis is provided to characterize its gen-
eralization performance and the column norm sampling is intro-
duced to construct the refined hypothesis space. In particular, the
fast learning rate with polynomial decay is reached for the GNKR.
Experimental analysis demonstrates the satisfactory performance of
GNKR with the column norm sampling.

Moving least-square method is investigated with examples drawn
from unbounded sampling processes. Convergence analysis is es-
tablished by imposing some incremental conditions on moments of
the example output and window width. The derived convergence
rates are consistent with the previous work concerning standard



1.1 Multi-kernel Regularized Regression

boundedness assumption.

« Extreme learning machine (ELM) has gained increasing attention
for its computation feasibility on various applications. However, the
previous generalization analysis of ELM relies on the independent
and identically distributed (i.i.d.) samples. Now, we go far beyond
this restriction by investigating the generalization bound of the ELM
classification associated with the uniformly ergodic Markov chains
(u.e.M.c.) samples. The upper bound of the misclassification error
is estimated for the ELM classification showing that the satisfactory
learning rate can be achieved even for the dependent samples. Em-
pirical evaluations on real-word datasets are provided to compare
the predictive performance of ELM with independent and Markov
sampling.

1.1 Multi-kernel Regularized Regression

Kernel methods such as Support Vector Machines have been ex-
tensively used in various learning tasks. The performance of a kernel
method largely depends on the data representation via the choice of
kernel function. Due to the practical importance of multi-kernel learn-
ing, many recent experiments and theoretical studies have been devoted
to this subject recently, see, e.g., [71], [81], [82], [131], [141], [144]. The
purpose of this section is to improve the estimation of learning rates for
the multi-kernel regularized regression (MKRR) algorithm.

Let us recall some basic concepts of statistical learning theory in
a regression setting. For details we refer to [119], [26], [27], [30], [130],
[144] and references therein.

As usual in the framework of statistical learning theory, we consider
a space X of possible inputs (instance space) and a space Y of possible
outputs (label set). The product space Z := X x Y is assumed to be
measurable and it is endowed with an unknown probability measure
denoted by p. Input-output pairs (z,y) are sampled according to p. We
assume X is a compact subset of R"” and Y is contained in [—M, M]. For
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Chapter 1 Learning to Regression: Error Analysis and Applications

every z € X, let p(y|z) be the conditional (w.r.t. z) probability measure
on Y and px(x) be the marginal probability measure on X. Notice that
p, p(y|z) and px(z) are related via p(z,y) = p(y|z)px(z). The error for
a measurable function f: X — Y is the so-called expected risk

£(f) = /Z V(y, f(x))dp,

where V(y, f(z)) is the loss function which measures the cost paid by
replacing y with the estimate f(z).

Now, we focus on the least square loss, namely,

V(y, f(z)) = (y - f(z))>.

It is known that the function that minimizes the expected risk

£(f) = /Z (v — £(@))dp

is the regression function defined by

fp(m)=/yydp(ylfc), r € X. (1.1)

From the assumption y € [-M, M|, we know that |f,(z)| < M.

Set N, := {1,2,...,m} for any m € N. A training set of size m
is drawn by sampling m independent and identically distributed pairs
according to p,

z:={z, 1 € Ny} ={(zi,u:), i € N, } € Z™.

We restrict our attention to the uniform convergence of the MKRR
with a prescribed set K of candidate Mercer kernels. We say that K : X x
X — R is a Mercer kernel if it is a continuous, symmetric, and positive
semi-definite, i.e., for any finite set of distinct points {z1,z2,...,2¢} C
X, the matrix (K (.’.Ei,.'l?j))g’jzl is positive semi-definite. The candidate
reproducing kernel Hilbert space (RKHS) H x associated with a Mercer
kernel K (see [2]) is defined as the closure of the linear span of the set
of functions {K, := K(z,-) : * € X}, equipped with the inner product
(+y)#y defined by
B



1.1 Multi-kernel Regularized Regression

<KZ‘, Ky>’HK = K(LU, y)
The reproducing property is given by
(Kgy Yt = f(z), VeelX, feHk. (1.2)

Denote C(X) as the space of continuous functions on X with the supre-
mum norm || - ||sc. Because of the continuity of K € K and the compact-
ness of X, we have

Kk 1= sup sup / K(z,z) < oc.
KeKzeX

So, the reproducing property above tells us
[flloe < llfllz, VS € Hi

The regularization scheme of MKRR is defined as a two-layer min-
imization problem

” _ NS I VRURRNY: 2
(Kz\s f2.0) -—arglrgelr,éfrg&{m;(yz f(z:)) +/\||fllx}, (1.3)

where ) is a positive constant called the regularization parameter. Usu-
ally it is chosen to depend on m : A = A(m), and A(m) — 0 as m — oc.

We set the empirical error with respect to the random samples z as
1
&) = — 3 (i — Flai))™.
i=1

It is a discretization of the error £(f). Then, the regularization scheme
(1.3) can be rewritten as

(K, fap) = arg min min {&:(f) + AllfII%} - (1.4)

Moreover, we expect that f,  to be a good approximator of f, as m —
Q.

Our main goal thus is to estimate the excess risk

E(fan) — E(fp) (1.5)
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for the empirical minimizer f, 5 provided by the regularization scheme
(1.4).

There is a vast literature of statistical performance analysis for multi-
kernel learning algorithms, e.g., [71], [82], [131], [144], [141]. These stud-
ies are based on different measures of complexity, such as Rademacher
averages [71], [82], [144] and empirical covering numbers [131]. Recently,
based on the theory of U-processes (see [28]), in [141] Ying and Campbell
introduce the Rademacher chaos complexity and establish novel gen-
eralization error bounds for the multi-kernel regularized classification.
Following the complexity analysis in [141], we consider here the MKRR
algorithm (1.4) and investigate its generalization performance. Using the
iteration technique in [117], [130], we derive faster convergence rates for
the MKRR than previous results in [82], [140], [141], [144]. Combining
the Rademacher chaos complexity with the iteration technique to derive
the generalization error bound is our theoretical contribution.

Now we introduce some basic definitions and notations. A data free
limit of (1.4) is defined as

L » . 2
(K, f2) = arg min min {£(f) + M fl&} - (1.6)
While the regularization error of scheme (1.4) is defined as
D) := min min {£(f) = E(f) + A&} - (1.7)

It is easy to verify that f) is the minimizer of D(A). The sample error is
defined by

Sz ={E€(fz2) — E(fa )} +{&(fr) — E(fA)}- (1.8)

Now, we present the following error decomposition which leads to
bounds for the difference £(f; ) — £(f,) (see [14], [27], [131]).

Proposition 1.1. Let f,, f, », and f\ be defined via the expressions (1.1),(1.4),
and (1.6) respectively. Then we have

E(fan) = E(fp) < E(fan) — E(fp) + Al fanllk, , < Sap+ D).



1.1 Multi-kernel Regularized Regression

The bounding technique for sample error (1.8) relies on complexity
measures for MKRR. Here, we consider Rademacher chaos complexity
as the measurement of hypothesis space complexity, which is defined
as below (also, see [105], [141]).

Definition 1.1. Let F be a class of functions on X x X and let {¢; : i € Ny}
be independent Rademacher random variables. Moreover, let x = {z; : i €
Ng} be independent random variables distributed according to a distribution
p on X. The homogeneous Rademacher chaos of order two, with respect to the
Rademacher random variables ¢, is a random variable system defined by

{L?g(e) = L Z €i€jg(xi,x;) 1 g € .7-'}.

1 jen,, i<j

We refer to the expectation of its superma
Z/A{q(J:') = Ec[sup |L?g(5)|]
geF

as the empirical Rademacher chaos complexity.

We refer the reader to Section 3.2 of [28] for a general definition of
the Rademacher chaos of an arbitrary order ¢ € N. It is worth men-
tioning that the Rademacher process can be regarded as a homoge-
neous Rademacher chaos process of order one. The nice application of
U-processes to the generalization analysis of the ranking and scoring
problem is recently developed in [25].

Now we recall the definition of the kernel pseudo-dimension of a
class of kernel functions on the product space X x X (see [1]).

Definition 1.2. Let K be a set of reproducing kernel functions mapping from
X x X toR. We say that Sy = {(x;,t;) € X x X : i € Ny} is pseudo-shattering
by K if there are real numbers {r; € R : i € Ny} such that forany b € {—1,1}9
there is a function K € K with the property sgn(K (x;,t;) — ;) = b; for any
i € Ng. Then, we define a pseudo-dimension dx of K to be the maximum
cardinality of Sy that is pseudo-shattered by K.

The following explicit estimate of the Rademacher chaos complexity
is proved in [141].
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Lemma 1.1. Denote the pseudo-dimension of K by di. Then, there exists a
universal constant ¢ such that, for any random variables x = {x; : i € Ny}
distributed according to a distribution p on X, it holds

Uy(K) < (1 + k)%dxc In(2eq?)).
It is easy to see that

£() =€y = [ (5@ = fye)’dox = I = fyll,

Hence the regularization error defined in (1.7) concerns the L2 _-approxi-
mation of f, by functions from H, ; it can be characterized by requiring
f, to lie in some interpolation space of the pair (L2

x> HE,), as done in
[82], [131].

Definition 1.3. We say the target function f, can be approximated with
exponent 0 < B < 1 in Hg, if there exists a constant cg, such that

D(A) < ep)P, YA > 0.

1.1.1 Error bounds

Now, we present our main results. The proofs of the results will
be given in next subsection. Now, we present the learning rate of the
MKRR (1.4) by trading off the sample error and the regularization error
with iterative technique.

Theorem 1.1. Assume that f, can be approximated with exponent 0 < < 1
in Hr,. Take X = (‘—i&;ﬂzm)%. Then, for any 0 < § < 1 there exists a constant
¢ independent of m such that
_rdxInm 4
E(fan) = Elfy) < (7
with confidence 1 — 6.

In particular, when § =1 and di is finite, the convergence rate is
the order of (ln—m)%. Note that under the same condition for D()\) the

m
8



1.1 Multi-kernel Regularized Regression

convergence rate of excess error (1.5) given in Corollary 5.4 of [82] is of
order (%) 0. Thus, by combining the estimate of Rademacher chaos
complexity with the iterative technique, we greatly improved the result
in [82].

In fact, applying the results in [131] (Theorem 7 and Proposition
3) to investigate the generalization performance of MKRR algorithm,
we can derive faster learning rates than Theorem 1.1. However, the
conditions on multi-kernels K in [131] are much stricter than ours. An
added capacity condition for the unit ball of the multi-kernel hypothesis
space is needed in [131]. Different from the capacity estimate of the
hypothesis space based on empirical covering numbers in [131], our
estimate depends on the pseudo-dimension of a class of candidate kernel
functions.

Now, we give two examples of error rates with the MKRR for
learning Gaussian kernels K. := {e“’“l"“t||2 : o0 € [0,00), z,t € X}
and general radial basis kernels

Kesg = {/0 e ?ll*=tdp(o) : p e M(RT), z,t € X},

where M(RT) denotes a class of probabilities on RT. Also, we denote
by H*(X) the Sobolev space with index s > 0 on X (see [106], [140]).

Example 1.1. Let X C R"™ be a domain with Lipschitz boundary. Let f,  be
defined by (1.4) with Gaussian candidate kernels K,. or general radial basis
kernels KC,ps. Assume f, € H®(X) with some s > 0. Then the following hold.

(1) Ifn/2 < s <n/2+2 then for any 0 < € < 2s—n, with A = (bm)%,

m

we have
Inm\ 355
Efar) — €U <O( () ™), (L9)
with probability at least 1 — 9.
(2) If X is bounded, px is the Lebesgue measure, and 0 < s < 2 then
by choosing \ = (mm) 3, with probability at least 1 — & we get

m

Inm

E(fan) = E(f) £ 0((—)_*) (1.10)

m
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Now we give some comparisons with the learning rates obtained
in [141], [144]. By using the comparison inequality for the least square
loss in [141], we can easily derive the corresponding convergence rate
for regression. If n/2 < s < n/2 + 2 then for any 0 < ¢ < 2s — n, the
convergence rate of Example 1 in [144] yields O((Inm) 2 m—ﬁﬁ) and
the learning rate in [141] yields O((In m)im_ﬁ ). Since 2s—e—n >
0, our learning rate in (1.9) is faster than the previous results of [141],
[144]. Meanwhile, for the case in which px is the Lebesgue measure
and 0 < s < 2, our learning rate O((l“Tm)_ﬁ) improves the results of
O((lnm)3m~ 5% ) in [144] and of O((lnm)zm™ %=+ ) in [141].

In the above example we consider the function approximation on
a domain of R", so the learning rate is poor if the dimension n is large.
However, in many situations, the input space X is a low-dimensional
manifold embedded in the large dimensional space R”. In such a situa-
tion, the improved learning rates have been investigated in [140] based
on the function approximation on Riemannian manifolds. In the sequel,
we discuss whether the results presented in [140] can be improved by
using the iterative technique.

Example 1.2. Let X be a connected compact C™ submanifold of R™ which
is isometrically embedded and it has dimension d. Let f, » be defined by (1.4)
with Gaussian candidate kernels K,. or general radial basis kernels K,ys. If
f» € H5(X) with some 0 < s < 1, then by taking X\ = (22)3, we have

m

E(fan) — E(fp) < O((ln—m)ﬁ) (1.11)

m

with probability at least 1 — 6.

When ignoring the difference of the form to express error rates
using expectations and probabilistic inequalities, the learning rate in
Example 1.2 improves the result of O((l%nﬂ)tisiw) in [140]. Moreover,
when d < n, the order of estimation in (1.11) is much better than the
one in (1.10).
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