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An updated and expanded edition of the popular guide to basic continuum
mechanics and computational techniques

This updated third edition of the popular reference covers state-of-the-art computational technigues
for basic continuum mechanics modeling of both small and large deformations. Approaches to developing
complex models are described in detail, and numerous examples are presented demonstrating how
computational algorithms can be developed using basic continuum mechanics approaches.

The integration of geometry and analysis for the study of the motion and behaviors of materials
under varying conditions is an increasingly popular approach in continuum mechanics, and absolute
nodal coordinate formulation (ANCF) is rapidly emerging as the best way to achieve that integration.
At the same time, simulation software is undergoing significant changes which will lead to the
seamless fusion of CAD, finite element, and multibody system computer codes in one computational
environment. Computational Continuum Mechanics, Third Edition is the only book to provide in-depth
coverage of the formulations required to achieve this integration.

- Provides detailed coverage of the absolute nodal coordinate formulation (ANCF),
a popular new approach to the integration of geometry and analysis

+ Provides detailed coverage of the floating frame of reference (FFR) formulation;
a popular, well-established approach for solving small deformation problems

= Supplies numerous examples of how complex models have been developed to
solve an array of real-world problems

« Covers modeling of both small and large deformations in detail

« Demonstrates how to develop computational algorithms using basic continuum
mechanics approaches

Computational Continuum Mechanics, Third Edition is designed to function equally well as a text
for advanced undergraduates and first-year graduate students and as a working reference for
researchers, practicing engineers, and scientists working in computational mechanics,
bio-mechanics, computational biology, multibody system dynamics, and other fields of science and
engineering using the general continuum mechanics theory.
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PREFACE

Nonlinear continuum mechanics is one of the fundamental subjects that form the foundation
of modern computational mechanics. The study of the motion and behavior of materials
under different loading conditions requires understanding of basic, general, and nonlinear
kinematic and dynamic relationships that are covered in continuum mechanics courses.
The finite element method, on the other hand. has emerged as a powerful tool for solving
many problems in engineering and physics. The finite element method became a popular
and widely used computational approach because of its versatility and generality in solving
large-scale and complex physics and engineering problems. Nonetheless, the success of
using the continuum-mechanics-based finite element method in the analysis of the motion of
bodies that experience general displacements, including arbitrary large rotations, has been
limited. The solution to this problem requires resorting to some of the basic concepts in
continuum mechanics and putting the emphasis on developing sound formulations that satisfy
the principles of mechanics. Some researchers, however, have tried to solve fundamental
formulation problems using numerical techniques that lead to approximations. Although
numerical methods are an integral part of modern computational algorithms and can be
effectively used in some applications to obtain efficient and accurate solutions, it is the
opinion of many researchers that numerical methods should only be used as a last resort to fix
formulation problems. Sound formulations must be first developed and tested to make sure
that these formulations satisty the basic principles of mechanics. The equations that result
from the use of the analytically correct formulations can then be solved using numerical
methods.

This book is focused on presenting the nonlinear theory of continuum mechanics and
demonstrating its use in developing nonlinear computer formulations that can be used in
the large displacement dynamic analysis. To this end, the basic concepts used in continuum
mechanics are first presented and then used to develop nonlinear general finite element

ix
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formulations for the large displacement analysis. Two nonlinear finite element dynamic
formulations will be considered in this book. The first is a general large-deformation finite
element formulation, whereas the second is a formulation that can be used efficiently to solve
small-deformation problems that characterize very and moderately stiff structures. In this
latter case, an elaborate method for eliminating the unnecessary degrees of freedom must be
used in order to be able to efficiently obtain a numerical solution. An attempt has been made to
present the materials in a clear and systematic manner with the assumption that the reader has
only basic knowledge in matrix and vector algebra as well as basic knowledge of dynamics.
The book is designed for a course at the senior undergraduate and first-year graduate level. It
can also be used as a reference for researchers and practicing engineers and scientists who
are working in the areas of computational mechanics, biomechanics, computational biology,
multibody system dynamics, and other fields of science and engineering that are based on the
general continuum mechanics theory.

In Chapter 1, matrix, vector, and tensor notations are introduced. These notations will be
repeatedly used in all chapters of the book, and therefore, it is necessary that the reader reviews
this chapter in order to be able to follow the presentation in subsequent chapters. The polar
decomposition theorem, which is fundamental in continuum and computational mechanics, is
also presented in this chapter. D’ Alembert’s principle and the principle of virtual work can be
used to systematically derive the equations of motion of physical systems. These two important
principles are discussed and the relationship between them is explained. The use of a finite
dimensional model to describe the continuum motion is also discussed and the procedure for
developing the discrete equations of motion is outlined. The principles of momentum and
principle of work and energy are presented, and the problems associated with some of the
finite element formulations that violate these analytical mechanics principles are discussed.
Chapter 1 also provides a discussion on the definitions of the gradient vectors that are used in
continuum mechanics to define the strain components.

In Chapter 2, the general kinematic displacement equations of a continuum are devel-
oped and used to define the strain components. The Green—Lagrange strains and the Almansi
or Eulerian strains are introduced. The Green—Lagrange strains are defined in the reference
configuration, whereas the Almansi or Eulerian strains are defined in the current deformed
configuration. The relationships between these strain components are established and used to
shed light on the physical meaning of the strain components. Other deformation measures as
well as the velocity and acceleration equations are also defined in this chapter. The important
issue of objectivity that must be considered when large deformations and inelastic formula-
tions are used is discussed. The equations that govern the change of volume and area, the
conservation of mass, and examples of deformation modes are also presented in this chapter.

Forces and stresses are discussed in Chapter 3. Equilibrium of forces acting on an infinites-
imal material element is used to define the Cauchy stresses, which are used to develop the
partial differential equations of equilibrium. The transformation of the stress components and
the symmetry of the Cauchy stress tensor are among the topics discussed in this chapter.
The virtual work of the forces due to the change of the shape of the continuum is defined.
The deviatoric stresses, stress objectivity, and energy balance equations are also discussed in
Chapter 3.

The definition of the strain and stress components is not sufficient to describe the motion of
a continuum. One must define the relationship between the stresses and strains using the con-
stitutive equations that are discussed in Chapter 4. In Chapter 4, the generalized Hooke’s law
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is introduced and the assumptions used in the definition of homogeneous isotropic materials
are outlined. The principal strain invariants and special large-deformation material models
are discussed. The linear and nonlinear viscoelastic material behavior is also discussed in
Chapter 4.

Nonlinear finite element formulations are discussed in Chapters 5 and 6. Two formulations
are discussed in these two chapters. The first is a large-deformation finite element formula-
tion, which is discussed in Chapter 5. This formulation, called the absolute nodal coordinate
formulation (ANCF), is based on a continuum mechanics theory and employs position gra-
dients as coordinates. It leads to a unique displacement and rotation fields and imposes no
restrictions on the amount of rotation or deformation within the finite element. The absolute
nodal coordinate formulation has some unique features that distinguish it from other exist-
ing large-deformation finite element formulations: it leads to a constant mass matrix; it leads
to zero centrifugal and Coriolis forces; it automatically satisfies the principles of mechanics;
it correctly describes an arbitrary rigid-body motion including finite rotations: and it can be
used to develop several beam, plate, and shell elements that relax many of the assumptions
used in classical theorems. When using ANCEF finite elements, no distinction is made between
plate and shell elements since shell geometry can be systematically obtained using the nodal
coordinates in the reference configuration.

Clearly, large-deformation finite element formulations can also be used to solve
small-deformation problems. However, it is not recommended to use a large-deformation
finite element formulation to solve a small-deformation problem. Large-deformation formu-
lations do not exploit some particular features of small-deformation problems, and therefore,
such formulations can be very inefficient in the solution of stiff and moderately stiff systems.
The development of an efficient small-deformation finite element formulation that correctly
describes an arbitrary rigid-body motion requires the use of more elaborate techniques in
order to define a local linear problem without compromising the ability of the method to
describe large-displacement, small-deformation behavior. The finite element floating frame of
reference (FFR) formulation, widely used in the analysis of small deformations, is discussed
in Chapter 6. This formulation allows eliminating high-frequency modes that do not have a
significant effect on the solution, thereby leading to a lower-dimension dynamic model that
can be efficiently solved using numerical and computer methods.

Although finite element (FE) formulations are based on polynomial representations,
the polynomial-based geometric representation used in computer-aided design (CAD)
methods cannot be converted exactly to the kinematic description used in many existing
FE formulations. For this reason, converting a CAD model to an FE mesh can be costly
and time-consuming. CAD software systems use computational geometry methods such
as B-spline and Non-Uniform Rational B-Splines (NURBS). These methods can describe
accurately complex geometry. The relationship between these CAD geometry methods
and the FE formulations presented in this book are discussed in Chapter 7. As explained
in Chapter 7, modeling modern engineering and physics systems requires the successful
integration of computer-aided design and analysis (I-CAD-A) by developing an efficient
interface between CAD systems and analysis tools or by developing a new mechanics based
CAD/analysis system.

In many engineering applications, plastic deformations occur due to excessive forces
and impact as well as thermal loads. Several plasticity formulations are presented in
Chapter 8. First, a one-dimensional theory is used in order to discuss the main concepts
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and solution procedures used in the plasticity analysis. The theory is then generalized to
the three-dimensional analysis for the case of small strains. Large strain nonlinear plasticity
formulations as well as the J, flow theory are among the topics discussed in Chapter 8.

I would like to thank many students and colleagues with whom I worked for several years on
the subject of flexible body dynamics. I was fortunate to collaborate with excellent students and
colleagues who educated me in this important field of computational mechanics. In particular,
I would like to thank my doctorate students, Bassam Hussein, Luis Maqueda, Mohil Patel,
Brian Tinsley, and Liang Wang, who provided solutions for several of examples and figures
presented in several chapters of the book. I would also like to thank my family for their help,
patience, and understanding during the time of preparing this book.

AHMED A. SHABANA
Chicago, IL
2016
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CHAPTER 1

INTRODUCTION

Matrix, vector, and tensor algebras are often used in the theory of continuum mechanics in
order to have a simpler and more tractable presentation of the subject. In this chapter, the math-
ematical preliminaries required to understand the matrix, vector, and tensor operations used
repeatedly in this book are presented. Principles of mechanics and approximation methods
that represent the basis for the formulation of the kinematic and dynamic equations developed
in this book are also reviewed in this chapter. In the first two sections of this chapter, matrix
and vector notations are introduced and some of their important identities are presented. Some
of the vector and matrix results are presented without proofs with the assumption that the
reader has some familiarity with matrix and vector notations. In Section 3, the summation
convention, which is widely used in continuum mechanics texts, is introduced. This introduc-
tion is made despite the fact that the summation convention is rarely used in this book. Tensor
notations, on the other hand, are frequently used in this book and, for this reason, tensors
are discussed in Section 4. In Section 5, the polar decomposition theorem, which is funda-
mental in continuum mechanics, is presented. This theorem states that any nonsingular square
matrix can be decomposed as the product of an orthogonal matrix and a symmetric matrix.
Other matrix decompositions that are used in computational mechanics are also discussed. In
Section 6, D’Alembert’s principle is introduced, while Section 7 discusses the virtual work
principle. The finite element method is often used to obtain finite dimensional models of con-
tinuous systems that in reality have infinite number of degrees of freedom. To introduce the
reader to some of the basic concepts used to obtain finite dimensional models, discussions of
approximation methods are included in Section 8. The procedure for developing the discrete
equations of motion is outlined in Section 9, while the principle of conservation of momentum
and the principle of work and energy are discussed in Section 10. In continuum mechanics,

Computational Continuum Mechanics, Third Edition. Ahmed A. Shabana.
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2 COMPUTATIONAL CONTINUUM MECHANICS

the gradients of the position vectors can be determined by differentiation with respect to dif-
ferent parameters. The change of parameters can lead to the definitions of strain components
in different directions. This change of parameters, however, does not change the coordinate
system in which the gradient vectors are defined. The effect of the change of parameters on
the definitions of the gradients is discussed in Section 1.

1.1 MATRICES

In this section, some identities, results, and properties from matrix algebra that are used repeat-
edly in this book are presented. Some proofs are omitted, with the assumption that the reader
is familiar with the subject of linear algebra.

Definitions

An m X n matrix A is an ordered rectangular array, which can be written in the following form:

a“ t(12 s U]”
(lz] (112 = (12”

A== "2 7 & (1.1)
A %) Ay

where a;; is the ijth element that lies in the ith row and jth column of the matrix. Therefore,
the first subscript i refers to the row number and the second subscript j refers to the column
number. The arrangement of Equation | shows that the matrix A has m rows and n columns.
If m=n, the matrix is said to be square; otherwise, the matrix is said to be rectangular. The
transpose of an m X n matrix A is an n X m matrix, denoted as AT, which is obtained from A
by exchanging the rows and columns, that is, AT = (a;).

A diagonal matrix is a square matrix whose only nonzero elements are the diagonal ele-
ments, that is, a; =0 if i #j. An identity or unit matrix, denoted as I, is a diagonal matrix that
has all its diagonal elements equal to one. The null or zero matrix is a matrix that has all its
elements equal to zero. The trace of a square matrix A is the sum of all its diagonal elements,

that is,
n

w(A) = ) a; (1.2)

=1

This equation shows that tr(I) = n, where I is the identity matrix and n is the dimension of the
matrix.
A square matrix A is said to be symmetric if

A=A", a.=a, (1.3)

u oL

A square matrix is said to be skew symmetric if

A=-A", a . =-a. (1.4)
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