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PREFACE

The title of this book almost makes a preface super-
fluous. =enes is simply about genes, recognizing what
amounts to a new field whose extraordinary progress
has all but overwhelmed the traditional discipline of
genetics. My aim is to cut through the enormous mass
of information that has accumulated recently, to dis-
cern general principles and describe the state of the
art in this exciting area. This text asks: what is a gene,
how is it reproduced, how is it expressed, what con-
trols its expression?

The underlying theme of this bogk is that the gene
has at its disposal a vast repertoire of strategies for
survival, different examples of which are displayed in
various systems. Reflecting the perspective of current
research, procaryotic and eucaryotic molecular biol-
ogy are given equal weight. Both are now part of the
same story. The starting point is the issue of how a
gene is represented in protein; and from the protein,
we work backward at the molecular level, as it were,
to the DNA itself. .

As a comprehensive introduction to the molecular
biology of the gene, this book assumes no prior knowl-
edge and is up to date with current research. | hope
that this overview will make this rapidly .advancing
subject more accessible and readily allow readers to
proceed to more advanced works. In view of the size
of the relevant literature, it would only be confusing to
rely on the citation of individual research articles. Each

chapter therefore concludes with a bibliography to
suggest useful reviews and some research articles
that lead more deeply into the subject.

| have tried to illustrate all important points dia-
gramatically, and where appropriate the illustrations
attempt to give some feeling for the scale and rela-
tionships of the elements involved. This preface would
certainly be incomplete without acknowledgment of
the considerable artistic endeavors of John Balbalis
to realise this aim.

One of the pleasures of writing this book has been
the ensuing discussions with my friends and col-
leagues who have commented on it. Many improve-
ments have resulted fromn the generous efforts of San-
kar Adhya, Sidney Altman, French Anderson, David
Clayton, Nicholas Cozzarelli, Bernard Davis, Igor Dawid,
Arg Efstratiadis, Nina Federoff, Alice Fulton, Joe Gall,
Nicholas Gillham, Philip Hanawalt, Ira Herskowitz, Lee
Hood, Joel Huberman, George Khoury, Nancy Kleck-
ner, Marilyn Kozak, Charles Kurland, Art Landy, Jef-
frey Miller, Masayasu Nomura, Charles Radding, Jeff
Roberts, Rich Roberts, Gerry Rubin, Robert Schimke,
David Schlessinger, David Shafritz, Phil Sharp, Allen
Smith, Phang-C. Tai, Susumu Tonegawa, Harold Var-
mus, Alex Varshavsky, and Hal Weintraub. Finally, it
hardly needs saying that the book would have been
much less fun to write without the enthusiastic partic-

ipation of my family. Benjamin Lewin
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PART 1
THE NATURE OF
GENETIC INFORMATION

In calling the structure of the chromosome fibers a
code-script we mean that the all-penetrating mind could
tell from their structure whether the egg would de-
velop, under suitable conditions, into a black cock or
into a speckled hen, into a fly or a maize plant, a
beetle, a mouse or a woman. . . . But the term code-
script is, of course, too narrow. The chromosome
structures are at the same time instrumental in bring-
ing about the development they foreshadow. They are
law-code -and executive power—or, to use another
simile, they are architect’s plan and builder’'s craft—
in one.

Erwin Schroédinger, 1945



CHAPTER 1.
WHAT IS A GENE?
A GENETIC VIEW

The concept of the gene has been the focus of some
hundred years of work to establish the basis of hered-
ity. It has been scrutinized from so many perspectives
that there is no simple one-line answer to satisfy the
question: what is a gene?

A gene is a sequence of DNA that carries the in-
formation representing a protein. Until very recently
this would have been an adequate (if incomplete) bio-
chemical description. The sequence of DNA could be
identified as a cantinuous stretch of nucleotides, re-
lated to the protein sequence by a colinear readout.
But now it is clear that the sequence representing pro-
tein is not always continuous; it may be interrupted by
sequences not concerned with specifying the protein.
So genes may be in pieces that are put together dur-
ing the process of gene expression.

‘A gene can be identified as a cluster of mutations
all of which prevent the production of the protein that

it represents. Although this remains true, the proper- .

ties of these clusters become more complex for inter-
rupted genes. This issue has been moot, because most
interrupted genes are found in situations in which
detailed genetic analysis is not possible; but in prin-
ciple, the genetic view of the gene now needs modifica-
tion:.

The large number of genes that make up the ge-
nome of any species are organized into a compara-
tively small number of chromosomes. The genetic ma-

: e
terial of each chromosome consists of an extremely

‘long stretch of DNA, containing many genes in a linear

order. How many genes are present in toto has been

_ a puzzle for a long time. Recently the view that each

gene may reside. by itself as a unique entity has been
superseded by the realization that, in many cases,
there may be clusters of related genes that constntute
small families.

The genome generally has been viewed as rather
stable, subject to changes in overall constitution and
organization only on an extraordinarily slow evolution-
ary time scale. This contrasts with recent evidence
that in some instances there may be rearrangements
that occur regularly; and there may:be components of
the genome that are relatively mobile.

The concept of the gene has therefore undergone
an evolution in which, although many of its traditional
properties remain, exceptions have been found to show
that none constitutes an absolute rule. Starting from
the discovery of the gene as a fixed unit of inheritance,
its properties were defined in terms of its residence at
a definite position on the chromosome, this in turn
leading to the view that the genetic material of the
chromosome is a continuous length of DNA repre-
senting many genes. By tracing the deVelopmeht
these ideas, we can arrive at an operational d .
tion of the gene; although it is impractical to provnde
a capsule definition. :



4 In mammals the haploid
stage is only a transient
intermediate between
diploid parents and progeny

2n n 2n

In mosses the diploid

stage is only a transient

intermediate concerned
{ with passage between
haploid generations

Figure 1.1

When eucaryotes perpetilate their genes through an alternation of diploid and haploid states,
either type of state may provide the predominant “adult” type while the other is concerned
solely with gamete and zygote formation. The mammals and the mosses are extreme examples
in which the adult generations are diploid and haploid, respectively.

Red indicates diploid (2n) tissue; grey indicates haploid (n) tissue.

A PARTICULATE FACTOR OF INHERITANCE sential alterations. Transitional forms were not ob-
served- in any experiment.” ‘

This (abbreviated) quotation from Mendel's remark-
able paper of 1865 introduces the fundamental con-
cept of genetics: there is a unit of heredity consisting

of some factor that is passed from parent to progeny.

“The constant characters that appear in the group of
plants may be obtained in all the associations that are
possible according to the mathematical Jaws of com-
bination. Those characters which are transmitted vis-

ibly, and therefore constitute the characters of the hy-
brid; are termed the dominant, and those that become
latent in the process ‘are termed recessive.  The
expression ‘recessive’ has been chosen because such
characters withdraw or disappear entirely in the hy-
brids, ‘but nevertheless reappear unchanged in their
progeny in predictable proportions, without any es-

This particulate factor is, of course, what we now know
as the gene. Mendel's work elucidated the general
behavior of the gene in inheritance. Implicit in this is
the concept that the organism is the gene's way of
expressing and perpetuating itself, a point illustrated
by the alternation of generations shown in Figure 1.1.

In striking contrast to the confusion of earlier thought
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about heredity, Mendel's work established genetics as
an experimental science through the introduction of
several critical features. First, the initial set of plants
was true breeding for the character under consider-
ation: each gave rise to plants showing only that char-
acteristic and none of the alternatives. Then the in-
heritance of only the one character was initially followed.
With this established, the simultaneous behavior of two
or more traits could be investigated. The experiments
were placed on a quantitative basis by counting the
numbers of each progeny type resulting from each
mating.

The characteristics of the gene discernible from
Mendel's work are summarized in what are known as
his first and second laws. The first law deals with the
properties of the individual gene. The organism has
two copies of each gene: in modern terminology it is
said to be diploid. Only one of the two copies is passed
from parent to offspring through the gametes (sex cells).
Thus when the gametes unite, the zygote (ferilized
egg) gains one copy from each parent, restoring the
situation in which every organism has one copy of
paternal origin and one of maternal origin.

A gene may exist in alternative forms that result in
the expression of a different characteristic (such as
red versus white flower color). These forms are called
alleles. The law of independent segregation states
that these alleles do not affect each other when present
in the same plant, but segregate unchanged by pass-
ing into different gametes when the next generation
forms. :

In a true-breeding organism, a homozygote, both
alleles are the same. But a mating between two par-
ents each of which is‘homozygous for a different allele
generates a hybrid or heterozygote. If one allele is
dominant and the other is recessive, the organism
will have the appearance or phenotype only of the
dominant type (so the heterozygote is indistinguisha-
ble from the true-breeding dominant parent).

But Mendel's first law recognizes that the genetic
constitution or genotype of the hybrid comprises the
presence of both alleles. This is revealed, as shown
in Figure 1.2, when the hybrid is crossed with another
hybrid to form the second generation. The critical point
is that the alleles do not mix (“no transitional forms
were observed”), but are physical entities whose in-
teraction is at the level of expression.

Parents

Garf\ehs ! @ @ ~

F1 hybrid .

/ Aa \
F2 generation @ @
Figure 1.2

Alleles show independent segregation.

The two parents are homozygous: AA has two copies of the dom-
inant allele; aa has two copies of the recessive allele. Each forms
only one type of gamete, so that the F1 (first hybrid generation) is
uniformly hybrid as Aa. Because A is dominant over a, the pheno-
type of Aa is the same as that of AA (indicated by the color). The
phenotype of the recessive homozygote aa is indicated by the lack
of color.

Each F1 hybrid forms both A and a gametes in equal amounts.
Upon mating these unite randomly to generate an F2 (second hy-
brid generation) consisting of: 1 AA: 2 Aa: 1 aa. Since the AA and
Aa have the same phenotype, this gives the classic 3: 1 ratio of
dominant ; recessive types.

In cases in which the heterozygote Aa has a phenotype inter-
mediate between the parental AA and aa, the F1 would be distinct,
and in the F2 the ratio of phenotypes would be 1 dominant : 2 inter-
mediate : 1 recessive.

Although the characteristics studied by Mendel (for-
tunately) showed complete dominance, this is not
necessarily always the case. Alleles may exhibit in-
complete (partiall dominance or no dominance
(sometimes known as codominance). In the latter case,
the heterozygote is distinguished from the homozy-
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Parents

Gametes

F1 hybrid

F2 generation

Figure 1.3

Different genes assort independently.

One parent is homozygous for two dominant genes, A determining color, and B determining shape
(shown by round structure). The other parent is homozygous for the recessive alleles a and b (char-

acteristics shown by no color and wrinkled shape). The F1 is uniform with the dominant character- -
istics. N

The F1 parents produce gametes in which there is independent segregation of alleles and inde-
pendent assortment of genes, so that equal amounts are produced of each of the four possible types .
of gamete. These unite randomly to form 9 genotypic classes, which because of the dominance
relationships appear as the four phenotypic classes: 9 colored-smooth : 3 colored-wrinkled : 3 rion-
colored-smooth : 1 noncolored-wrinkied. :

Note that the same numbers are present of each reciprocal genotype; for example, the two parents
(one each of AABB and aabb) or the recombinant classes (one each of AAbb and aaBB). The 3: 1
ratios are maintained for each individual segregating character.

The number of phenotypic classes will be greater if one or both of the characters is not dominant
(so that heterozygotes appear different from either homozygote). it will be less if two genes affect a
single characteristic. So if both A and B were needed for the production of color, a ratio of 9 colored : 7
noncolored would be seen in the F2.



