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CHAPTER 1

CONDUCTING POLYMERS: REDOX STATES
IN CONJUGATED SYSTEMS

James F. Ponder Jr. and John R. Reynolds*
School of Chemistry and Biochemistry
School of Materials Science and Engineering
Center for Organic Photonics and Electronics
Georgia Institute of Technology
Atlanta, Georgia 30332, USA
*reynolds@chemistry.gatech.edu

In this chapter, a brief history of conjugated polymers is presented followed by
fundamental aspects of doping and redox states. The doping of polymers via either
chemical dopants or electrochemical methods is outlined mechanistically for degenerate
ground state, and non-degenerate ground state, conjugated systems with polaron and
bipolaron formation, and the corresponding change in electrical conductivity discussed.
Electrochromic polymers are presented to illustrate redox switching as the electrochem-
ical process can be visualized through a visible color change. Additionally, the use of
steric interaction to tune both the redox properties and color of a conjugated backbone
is taught.

1. Setting the Stage

As we consider the many unique properties of m-conjugated organic molecules,
oligomers, and polymers, it is evident from the previous chapters in this text that
they behave as semiconductors in their neutral form, which provides many opportu-
nities as electroactive materials. In this text we have been exposed to the properties
of charge transport, light emission, and light absorption, which can all be finely
tuned via molecular and macromolecular structure, allowing many potential appli-
cations to emerge. These applications include, but are not limited to, light emit-
ting diodes, field effect transistors, organic solar cells, and photodetectors. In this
chapter, we detail the importance of the creation of charged states on conjugated
polymer chains and how these charged states provide a different set of properties
not accessed in the neutral systems alone.

Reflecting historically on the development of m-conjugated active materials one
can start with research from the 1970s in the preparation of free-standing films!
of polyacetylene (CH)x and its oxidative doping to attain high levels of electrical
conductivity.?® This research carried out in the research groups of Hideki Shirakawa,



2 J. F. Ponder Jr. & J. R. Reynolds

Alan MacDiarmid, and Alan Heeger provided the crucial discoveries that stimulated
and helped to create the field of conjugated polymers and ultimately led to the
awarding of the Nobel Prize in Chemistry in 2000.* This story has been related in
many reviews and publications® ® and will not be repeated here. Rather, we will
use that work to guide us as we discuss the fundamental aspects of the charged
states of conjugated polymers. It should be noted that while this material can be
synthesized in either a cis or trans configuration,® with correspondingly different
properties, we will be focusing on the trans form in this text.

Silver colored, free-standing films of (CH) x can be prepared via Ziegler—Natta
(ZN) polymerization of acetylene on a surface coated with ZN-catalyst/initiator
system.! While these films are easily handled and can be cut to any dimension,
it is important to note that they are air unstable as they oxidize in an ambi-
ent atmosphere. This property of low oxidation potentials is actually a benefit
as we consider the next step in generating electrical conductivity in a conjugated
polymer. The as-made (CH)x films are semiconducting in nature with the all
trans isomer having electrical conductivities on the order of 10=°S/cm.? Placing
these films in a vacuum reactor with electrical leads attached and subsequently
exposing them to gas-phase oxidants (such as Iy or AsFj5) leads to an immedi-
ate and large enhancement of the electrical conductivity with over an eight order
of magnitude change measured in the first experiment to conductivities greater
than 20,000S/cm. For example, Park and co-workers carried out the ferric perchlo-
rate oxidation of (CH) x to provide materials with conductivities ranging between
20,000-41,0008 /cm.” These oxidation experiments can be also be carried in both
solution and electrochemical methods as exemplified by perchlorate doping.®*

These oxidation reactions are often termed “doping” by analogy to the doping
of inorganic semiconductors with trace additives as similar changes in conductivity
are observed. This is evident in Fig. 1 for results provided on poly [(CH)x—ClOy4]
prepared by electrochemical oxidation in a perchlorate electrolyte.® During this
oxidation, as charges are introduced onto the polymer backbone a charge balancing
counter ion, the so-called dopant ion, is introduced into the material and its content
can be measured allowing establishment of a dopant level. In these experiments the
doping level (YY) is controlled over five orders of magnitude from one charge per
million carbon atoms in the (CH) x film, to one charge per ten carbon atoms. At low
doping levels, it can be seen that the conductivity stays between 10~6-107°S/cm,
up to approximately one charge per 10,000 carbon atoms. Near a dopant level of one
charge per thousand carbon atoms, an especially rapid increase in conductivity is
found to occur to values near 100 S/cm. This rate of increase then begins to decline
upon further doping.

So, what is happening during this oxidative doping process? Figure 2(a) shows
a two-step oxidation process of (CH)x. Starting with the neutral polymer, ini-
tial removal of electrons from the conjugated backbone leads to cation-radicals
randomly distributed along the polymer chain, which are counter balanced by
the dopant anions X. With these initial oxidations, these cation-radicals remain
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Fig. 1. Conductivity as a function of dopant level of a polyacetylene film, electrochemically
oxidized in a LiClOy4 electrolyte solution.®
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Fig. 2. (a) Stepwise oxidation of polyacetylene from neutral, to cation-radical, to dication charge
balanced with anion A and the (b) stepwise reduction of polyacetylene from neutral, to anion-
radical, to dianion charge balanced with cation C.

relatively closely associated (in essence pinned) to the charge-balancing doping ion.
As such their ability to move along the polymer chain, or hop from chain to chain,
is limited and there is little change in the electrical conductivity. As the dopant
level increases, the cation-radicals begin to interact with one another leading to a
coupling of the radicals (sometimes called annihilation of spin) such that the more
heavily doped polymer can be represented by a series of cations delocalized along
the polymer backbone and charge balanced by dopant ions. These positive charges
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will coulombically repel one another and leads to an upper dopant level of about
one charge per 7-10 carbon atoms (in the case of polyacetylene). At first glance, one
might be surprised that such a large conductivity increase is observed when there
is only one charge per thousand carbon atoms in the material. Consider though
that these thousand carbon atoms can fit in a box 10 carbon atoms long per side.
On average then, each charge is only on the order of five carbons away from the
“box” that the next charge can be found in. The very rapid rise in conductivity
can then be attributed to an immediate and rapid increase in the mobility of the
charges as conductivity, in a simple sense, is a product of the number of charges,
their mobility, and the magnitude of the charge on the carrier. The conductivity in
these oxidatively doped (CH)x materials is p-type as the positive carriers on the
polymer chains are mobile, while the dopant anions are immobile in the solid film.
Many p-type dopant systems and methods have been developed over the years.!?
Of particular note is the work of Marder et al. on molybdenum-based p-dopants.
These dopants were thoroughly investigated using both experimental and compu-
tational techniques and found to be versatile and stable in devices.!! 13

Analogous to p-doping, chemical or electrochemical reduction of (CH)x can
lead to the formation of radical anions and delocalized anionic charge carriers to
form n-type doped materials. This is illustrated in Fig. 2(b) where the mobile charge
carriers are the anions delocalized along the polymer backbone. Early experiments
used especially reactive reducing agents, such as elemental sodium and potassium
in naphthalene, to provide the n-doped materials with the alkali metal cations as
the charge balancing species.!* These dopant systems are difficult to handle, as they
require full exclusion of ambient oxygen and moisture. This has motivated research
in the field to develop new stable dopant systems. Marder and co-workers have
led the way in this research area by their studies on n-dopants that are stable to
oxygen in the solid state.!® The focus of this work has been in using ruthenium and
rhodium-based dimers as reductants that form stable cations in films or solutions.

Examining the structure of neutral trans (CH)x, it can be observed to have
what is termed a degenerate ground state.'® What this means, in essence, is that
the resonance form shown for the double bonds on the main chain in Fig. 2(a) have
the same energy as the resonance form that can be drawn by moving each electron
pair over one bond. In comparison to benzene, one would think that the polymer
might have a bond order of 1.5 and that the electrons along the (CH) x chain would
be fully delocalized in the neutral polymer with all bonds being the same length.
This is not the case as there is a stabilization of the structure to form long and
short bonds (short bonds not as short as double bonds and long bonds, not quite
as long as single bonds) due to a Peierls transition, which is similar in concept to
the Jahn—Teller effect.!” The length of these long bonds and short bonds have been
measured by electron diffraction and shown to be 1.38 and 1.43 A in length for the
double and single bonds, respectively.'® The result in this degenerate ground state
system is that the charge carriers formed on the fully oxidized or reduced material
move independently along the polymer chain, coulombically repelling one another



