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Foreword

At the end of the 19th Century, Thomas Edison and Nikola Tesla were
very invested in the famous AC versus DC power battle for the power
networks development, i.e. War of the Currents.

During the 20th Century and today, power networks are mainly based on
an AC supply.

Now, at the beginning of the 21st Century, the continuous development
of the increasingly renewable energy sources (RESs) interconnected into
power networks may reveal the following strategic question:

— What do we see as the future of AC and DC power networks?

The author of this book tries to answer this fundamental question to
ensure security of the electricity supply in the world by providing an in-
depth thinking based on a new approach called “Systems of Systems”, using
advanced control algorithms. Moreover, the concept of “Plug and Play” is
also introduced by the author to satisfy industrial objectives in relation with
the development of new electric power grids integrated massive RESs and
plug-in electric vehicles (PEVs).

The large experience of the author in R&D in the industry, supplemented
by a significant background in academic research and executive teaching,
give to this book a particular attractiveness.

The multi-terminal direct-current (MTDC) grids, using power
electronics-based systems, are investigated by the author in terms of
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modeling, analysis and advanced control in order to define the optimized
building blocks requested for “mixed” AC & DC future power networks.

From the theoretical point of view, fully in relation with the stability
analysis of AC and DC grids, the equivalence of the AC “swing equation”
and the DC “swing equation” is described. This new analytical tool appears
as a major added value of the presented works.

This book has also the ambition to bring together the academic and
industrial communities in the areas of:

— power networks,

— automatic control,

— power electronics,

— electrical machines,

in order to propose new disruptive technologies to build the future mixed AC
and DC power networks.

Many fields of scientific investigations are present in this work and open
the door for future debates on transmission and distribution grids,
guaranteeing the security of the electricity delivery and minimizing the risk
of blackouts.

To conclude, this book is certainly a reference for the advanced control of
“mixed” AC and DC power networks in the future.

Prof. Dr. Ing. Jean-Luc THOMAS

Chair Professor in Electrical Engineering

Conservatoire national des arts et métiers, Paris, France

President, European Power Electronics and Drives Association (EPE)



Preface

Nowadays, more than ever, the power engineering domain is facing
huge challenges. It is showing an increasing interest in intermittent
renewable energies which are imposing major technical limitations. The use
of these resources must be accompanied by secure, indigenous, sustainable,
clean and competitive operation. A realistic solution is wind power. Many
countries are now starting to install wind turbines offshore. In Europe, the
offshore wind potential is able to cover seven times the whole demand.
High-voltage alternating current (HVAC) provides the simplest and most
economic connection method for short distances. Because the distance of the
offshore farms exceeds 100-150 km, the transmission with high-voltage
direct current (HVDC) is economically inevitable. Thus, HVDC systems
offer interesting prospects if the power grid is well controlled.

For power transmission, the DC grid would overlay the existing AC grid,
like a national motorway system connects to smaller local road systems. In
power distribution, DC grids will emerge from more constrained grid codes
as they will be imposed by distribution operators for PV integration. One of
the main challenges for DC deployment is the handling of multi-terminal DC
(MTDC) grids. At the heart of the thinking behind the MTDC grids is,
precisely, the notion of “system of systems”. Indeed, a key component of
systems of systems control and operations is the notion of time scales. For
example, the primary control in AC grids is a global but distributed control
in which the notion of “Think Globally and Act Locally” (TGAL) is applied.
This time scales control philosophy will enable the “plug-and-play” property
which is mandatory when dealing with networked systems. For example, in a
flock of birds or school of fish, each individual keeps a certain distance and
follows the congener in front. The result is that each individual acts like the
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whole group, while the whole group acts like an individual (droop control:
global but distributed control). The individual can leave or join the group
without altering its global behavior (plug-and-play). In addition to time
scales, space scale considerations need to be taken into account with new
modeling, control and observation tools and techniques.

Abdelkrim BENCHAIB
July, 2015
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Introduction and Problem Positioning

I.1. Today’s power network conditions

Operating closer to their limits, AC power grids are more vulnerable and
subject to instabilities than ever before. Controlling and operating them with
a given degree of reliability will be our main challenge in power networks of
the future. The warning signs are shown in Figure I.1.

Auqus! 2002 ftaly Septembe

Losses: 61,800 MW Losses: 20,000 MW

Persons: 50 millions Persons: 57 millions
Source CRE Duration: up to 2 days Duration: 2 hours  Source CRE

A pyianid of sand

that teaches a
certam heght
before it collapses

Figure 1.1. Blackouts in power networks

In 2003, blackouts cost the US economy $6 billion. In the same year, they
were responsible for four deaths in Italy. The power failures across Western
Europe in 2006 caused by a transmission line shutdown in Germany
underlined the risks of outages crossing national boundaries (see [ALS 14]
and references therein).
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|| Area | under-frequency /Z November 4th, 2006
[ Area 2 over-frequency fr
3 Arca 3 under-frequency

Losses: 17,000 MW
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Duration: 2 hours

50.8
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498 ; ; . ; ; : : ;
V00 223453 223546 223840 2124033 224226 2:460 224513 224807 225000

Figure 1.2. Blackout in Westem Europe, 4th November 2006: frequency
split and resynchronization process (source; ENTSOE)

During this latter event, the UCTE grid was split into three islands at
different frequencies. In the 2 hours, it took to resynchronize, some 15
million people were affected, and some 17,000 MW of power generation had
to be curtailed.

Yet a certain school of thought contends that blackouts are natural
network behavior: “It’s like a pyramid of sand that reaches a certain height
before it collapses, because that’s the nature of sand (see Figure 1.1 and
references in [DOB 12]). There have been serious attempts to develop
blackout prevention strategies, but blackouts and brownouts still occur and
will continue to do so. Prevention is merely containment.” Sooner or later,
the variety and complexity of loads and operations will reach AC network
limits.



