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Collective Classical and Quantum Fields

in Plasmas, Superconductors, Superfluid 3He, and Liquid Crystals

This is an introductory book dealing with collective phenomena in many-body systems. A gas
of bosons or fermions can show oscillations of various types of density. These are described by
different combinations of field variables. Especially delicate is the competition of these variables.
In superfluid *He, for example, the atoms can be attracted to each other by molecular forces,
whereas they are repelled from each other at short distance due to a hardcore repulsion. The
attraction gives rise to Cooper pairs, and the repulsion is overcome by paramagnon oscillations.
The combination is what finally led to the discovery of superfluidity in *He. In general, the
competition between various channels can most efficiently be studied by means of a classical
version of the Hubbard-Stratonovich transformation.

A gas of electrons is controlled by the interplay of plasma oscillations and pair formation.
In a system of rod- or disc-like molecules, liquid crystals are observed with directional
orientations that behave with unusual five-fold or seven-fold symmetry patterns. The existence
of such a symmetry was postulated in 1975 by the author and K. Maki. An aluminium material
of this type was later manufactured by Dan Shechtman which won him the 2014 Nobel prize.
The last chapter presents some solvable models, of which one of them was the first to illustrate
the existence of broken supersymmetry in nuclei.
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Preface

Strongly interacting many-body systems behave often like a system of weakly inter-
acting collective excitations. When this happens, it is theoretically advantageous
to replace the original action involving the fundamental fields (electrons, nucleons,
He. *He atoms. quarks ete.) by another action in which only certain collective ex-
citations appear as independent quantum fields. Mathematically, such replacements
can be performed in many different ways without changing the physical content of
the initial theory. Experimental understanding of the important processes involved
can help theorists to identify the dominant collective excitations. If they possess
only weak residual interactions, these can be treated perturbatively. The associated
collective field theory greatly simplifies the approximate description of the physical
systeni.

It is the purpose of this book to discuss some basic techniques for deriving such
collective field theories. They are based on Feynman's functional integral formula-
tion of quantum field theory. In this formulation, the transformation to collective
fields amounts to mere changes of integration variables in functional integrals.

Svstems of charged particles may show excitations of a type whose quanta are
called plasmons. For their description, a real field depending on one space and one
time variable is most convenient. If the particles form bound states, a complex field
depending on two spacetime coordinates renders the most economic description.
Such fields are bilocal, and are referred to as pair fields. 1f the attractive potential
is of short range. the bilocal field simplifies to a local field. This has led to the field
theory of superconductivity by Ginzburg and Landau. A bilocal theory of this type
has been used in elementary-particle physics to explain the observable properties of
strongly interacting mesons.

The change of integration variables in path integrals will be shown to correspond
to an exact resunnnation of the perturbation series, thereby accounting for phenom-
ena which cannot be described perturbatively in terms of fundamental particles.
The path formulation has the great advantage of translating all quantum effects
among the fundamental particles completely into the field language of collective ex-
citations. All fluctuation corrections may be computed using only propagators and
interaction vertices of the collective fields.

The method becomes unreliable if several collective effects compete with each
other. An example is a gas of electrons and protons at low density where the attrac-
tive forces can produce hydrogen atoms. They are absent in a description involving
a plasmon field. A mixture of plasmon and pair effects is needed to describe these.
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Another example is superfluid *He. where pairing forces are necessary to produce
the superfluid phase transition. Here plasma-like magnetic excitations called para-
magnons provide strong corrections. In particular, they are necessary to obtain
the pairing in the first place. If we want to tackle such mixed phenomena. another
technique must be used called variational perturbation theory.

In Chapter 1, 1 explain the mathematical method of changing from one feld
description to another by going over to collective ficlds representing the dominant
collective excitations. In Chapters 2 and 3. 1 illustrate this method by discussing
simple systems such as an clectron gas or a superconductor. At the end of Chapter
3. 1 had good help from my collaborator S.-S. Xue, with whom I wrote the basic
strong-coupling paper (arxiv:cond-mat/1708.04023). that is cited as Ref. [89] on
page 143. In Chapter 4. I apply the technique to superfluid *He. In Chapter 5. 1
use the field theoretic methods to study physically observable phenomena in liguid
crystals.  In Chapter 6. finally, T illustrate the working of the theory by treating
some simple solvable models.

[ want to thank my wife Dr. Annemarie Kleinert for her great patience with
me while writing this book. Although her field of interest is French Literature and
History (her homepage https://akinrt.de), and thus completely different from mine,
her careful reading detected many errors. Without her permanent reminding me of
the still missing explanations of certain questions 1 could never have completed this
work. My son Michael, who just received his PhD in experimental physics, deserves
the credit of asking many relevant questions and making me improve my sometimes
too formal manuscript.

Berlin. December 2017
H. Kleinert
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