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Preface

Interests in localization and related instabilities in the field of geomechanics date
back to the JMPS paper of Rudnicki and Rice (1975) “Conditions for the locali-
zation of deformation in pressure-sensitive dilatant materials™. It models strain
localization in rocks as material instability. Subsequently. strain localization
in soils was considered as shear band by Vardoulakis et al. (1978) “Formation
of shear bands in sand bodies as a bifurcation problem™ in LINAMG. Rescarch
interests in this area expanded considerably and resulted in the first interna-
tional workshop on Localization ol Soils organized in Karslrule. Germany.
February 19880 and this international workshop became the first sequel to our
current International Workshop on Bifurcation and Degradation in Geomaterials
(IWBDG). This aroused so much enthusiasm and interest in the fundamental
aspects ol bifurcation theory to soils that the second workshop followed in
Gdansk. Poland. September 1989, The topic was then extended to rock mechanies
al the third mternational workshop in Aussois, France. September, 1993, In 1997,
this international workshop series was expanded to include instabilities and deg-
radations in geomaterials at the fourth workshop in Gifu. Japan. September 1997,
Since then. the name of IWBDG was adopted and subsequent international work-
shops were held at Perth. Australia. November 1999 (filth). at Minneapolis. USA.
June 2002 (sixth). at Crete. Greeee, June 2005 (seventh). at Lake Louise, Canada,
May 2008 (eighth) and at Porquerolles. France. May 2011 (ninth). The tenth inter-
national workshop ol this series continued this central theme ol bifurcation and
degradation of geomaterials. and was held in Hong Kong during May 28-30, 2014
(1Oth IWBDG) at the beautiful campus of the Hong Kong Polytechnic University.

The 10th TWBDG was attended by 66 participants representing 16 countries
or regions, including Australia, Austria. Belgium, Canada, Chile. France, Greece.
Hong Kong China. Iran. Japan. Mainland China. Norway. Poland. Sweden, UK
and USA. A total of 55 presentations were delivered. covering three full days.
Among them. 17 were registered as students. This proceedings published by
Springer contains 54 peer reviewed full papers.

The workshop would not be possible without the help of qualified and diligent
reviewers. and they include Mustafa Alsaleh. Ronaldo 1. Borja, Jacques Desrues.
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Zhiwei Gao. Ning Guo. Peijun Guo, Marte Gutierrez. Wenxiong Huang. Mingjing
Jiang. Xia Li, Francois Nicot. Fusao Oka. Jacek Tejchman, Antoinette Tordesillas,
Richard Wan. Gang Wang. JelT Jianfeng Wang. Wei Wu. Zhenyu Yin. Jidong Zhao
(in alphabetical order). Their helps are highly appreciated. The financial spon-
sors are Fong On Construction Limited (courtesy ol Dr. James C.K. Lau. IP)
and the Faculty ol Construction and Environment. The Hong Kong Polytechnic
University (through Conference Support Scheme). Non-financial sponsors include
Geomechanies Committee, AMD of ASME, Elasticity Committee, EMI ol ASCE.
HKGES. Geotechnical Division ol HKIE and TCI103 Numerical Methods of
ISSMGE. The clerical and logistics supports [rom the Department of Civil and
Environmental Engineering are highly appreciated.

Kam-Tim Chau
Jidong Zhao
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Simulations of Shear Zones and Cracks
in Engineering Materials Using eXtended
Finite Element Method

Jerzy Bobinski and Jacek Tejchman

Abstract Numerical simulations of cracks and shear zones in quasi-brittle materials
are presented. Extended Fintte Element Method is used to describe both cracks and
shear zones. In a description of tensile cracks. a Rankine criterion is assumed. A
discrete Mohr-Coulomb law is adopted for simulations ol shear zones. Results of simple
numerical tests: uniaxial tension. bending and biaxial compression are demonstrated.

1 Introduction

Localization of deformation is observed in many materials like concrete. glass,
metals. polymers. soils and rocks. In soils. rocks and concerete this phenomenon
is manilested by the presence ol shear zones and cracks. The numerical modelling
of strain localization within continuum mechanics requires the use ol advanced
constitutive models, based e.g. on an elasto-plasticity or hypoplasticity theory.
All continuum constitutive laws have to include a characteristic length of micro-
structure to obtain mesh-independent results of the width and spacing of localized
zones. Shear or tensile zones can be also simulated more explicitly by using inter-
face (cohesive) elements or the discrete element method (DEM).

Another method. which gains strong popularity in difterent arcas 1o describe
shear and tensile zones in quasi-brittle materials and soils as discontinuities in a
displacement field is the eXtended Finite Element Method (XFEM). Tt is based
on the Partition of Unity Method and it assumes an enrichment of displacements
Lo capture jumps across localized zones. Extra degrees ol freedom are added in
regions where strain localization occurs. This approach allows for a placement ol
localized zones within finite elements.

J. Bobinski ¢ v - 1 Tepchman
Gdansk University of Technology. Narutowicza | 1/12, 80-233 Gdansk. Poland
c-mail: bohin@ pg.gda.pl

1o Tejehman
e-mail: tejchmk @pge.oda.pl
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2 J. Bobinski and 1. Tejchman

The paper presents numerical simulations ol the formation and growth ol shear
and tensile zones in soils with the aid of the eXtended Finite Element Method. To
describe shear zones. the constitutive law was based on the Mohr-Coulomb model.
To simulate cracks under tensile loading. the Rankine approach was used. Some
tests Tike biaxial compression, uniaxial tension and three-point bending were
simulated.

2 Extended Finite Element Method

2.1 General Description

The eXtended Finite Element Methods (XFEM) allows for simulating displace-
ment jumps across linite elements (Belytschko and Black 1999). Tt can be used to
simulate brittle materials (Mogs and Belytschko 1999). cohesive cracks (Wells and
Sluys 2001 or shear zones in soils (Song et al. 2006). The formulation used fol-
lows (with some slight modifications and improvements) the general idea presented
by Wells and Sluys (2001). Tt is based on the so-called shifted-basis enrichment
(Zi and Belytschko 2003) to deseribe a displacement field with discontinuous
jumps. This modification has two advantages over the standard version: the total
nodal displacements are equal 1o the standard displacements and the implementa-
tion of finite elements is simpler since two types ol elements exist only.

In a non-cracked region, a linear elastic constitutive law between stresses and
strains was always assumed. To create a new crack segment. a crack creation crite-
rion has to be fulfilled at least in one point of the element at the (ront of the crack
tip. Crack tips (end points) can be placed only at finite clements edges. In order to
smoothen the stress field around the crack tip, the averaged stresses were used in
determining the crack direction (Wells and Sluys 2001) defined as:

r

. l e
o = / owdV withw(r) = PEY exp (“T) (h

o\ a
\

where the domain Vois the semicirele at the front of the crack tip, w—the weight
function, r—the distance between points and /,,—the averaging length. related 1o
the size of finite elements.

2.2 Discrete Rankine and Mohr-Coulomb Model
A discrete Rankine model was defined to simulate tensile cracks. To activate a
crack. the following condition was assumed:

max{ry .o a3} = f. (2)
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)

where . a2 and o3 are the principal stresses and f; is the tensile strength. The direc-
tion of the crack extension was assumed to be perpendicular to the direction ol the
maximum principal averaged stress (see FEq. ). The following loading function
within a discrete cohesive law was chosen:

,/.(II”H”-"‘-):”“u]l—"‘- (3)

with the history parameter & equal to the maximum value of the normal compo-
nent [|uy,]] of the displacement jump achieved during deformation. With /> 0. a
loading case occurs, while f< 0 stands Tor a reloading or an unloading phase. The
softening of the normal component of the traction vector was described using an
exponential relationship:

ty = frexp (—@) (l — exp(-zl, ‘/f i\') ) (4
(!r (I’

where Gy s the fracture energy and ¢ is the numerical drop factor (Cox 2009),
In the tangential direction. a linear relationship between displacement jump and
traction was defined by the stiffness 77,

To simulate shear zone. a discrete version ol the clasto-plastic Mohr-Coulomb
law with the internal riction angle ¢ and dilatancy angle ¢ was used. The activa-
tion function was also based on Mohr-Coulomb criterion:

| .
() —o3) + (o) +03)sin ¢ — ccosgp = (. (5)

b [ —

Linear soltening of material cohesion ¢ was defined as:
cix) = max{emax — HK. Crhe (6)

where ¢p—the maximum cohesion. ¢, —the residual cohesion and H—the sol-
tening modulus. The penalty stiffnesses: normal Ky and shear K¢ were delined to
calculate elastic displacement jumps. It allows to use standard plasticity algorithm.
High value ol Ky prevents over penetration ol shear zone surfaces. The direction of
the propagation # was calculated based on a bifurcation analysis with respect to
principal averaged stresses directions:

2 sing +sin Y

2 —=sin¢g — siny

n” 6 = (7)

3 Numerical Examples

First. a simple uniaxial tension test was simulated. The width of the specimen
was 100 mm. height 150 mm and thickness | m (Fig. Ta). The starting point of
the crack propagation was defined in the middle of the left edge. The modulus ol
clasticity was equal to £ = 30 GPa. the Poisson’s ratio was 1 = 0.2, the tensile
strength was f, = 3 MPa and the fracture energy G; = 100 N/m with exponential
softening (Eq. 4). The drop factor was chosen as d; = 10%, The stress averaging
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Fig. 1 XFEM results: for uniaxial tension a geometry and boundary conditions. b foree-
displacement diagrams

length was /,, = 0. The shear stiffness was Ty = 102 MPa/m. To examine the
mesh insensitivity. simulations were performed with three different 3-node tri-
angle FE-meshes: coarse (600 elements). medium (2400 clements) and fine
(5,400 elements). Almost the same force-displacement curves were obtained
(Fig. 1b). A horizontal crack was properly reproduced.

Next, the simulations of a three-point bending test of notched concrete beams
were carried out. The geometry was taken from experiments by Le Bellego et al.
(2003) Three dilTerent beam sizes were numerically investigated: small (1 = 8 cm).
medium (1 = 16 ¢cm)

and large (h = 32 c¢m). The span length ol the beam was
cqual to L = 3 h (Fig.

2a). The loading was preseribed at the top edge at the mid-
span via the vertical displacement. In the simulations, £ = 38.5 GPa and v = 0.2
were taken with the tensile strength of f; = 3.2 MPa. The exponential softening
with the [racture energy Gy = 80 N/m was delined. The drop factor was chosen
as dy = 10%. The stress averaging length was /,, = 1 cm. The material parameters
were the same for all beams. Three different meshes with 3,068, 4,956 and 9.132
3-node constant strain triangles were defined for a small. medium and large beam.
respectively. The crack starting points were located at the left side near the node at
the line of the symmetry of the each beam.

(a) (b) 10
] — Flisimulations
.8 experiments
l” :_("
= 6
2,
h ,‘_E_ 1=
| =,
- L -
4 L v B N
7’ . 0 —
T T T |
1] 0.1 0.2 0.3 0.1

Displacement o funm]

Fig, 2 XFEM results for three-point bending test: a geometry and houndary conditions. b force-
displacement diagrams
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Fig. 3 XFEM result for biaxial compression: a foree-displacement curve. b deformed meshes

Figure 2b shows the calculated force-displacement diagrams for notched
concrete beams as compared with the experimental curves. Since it was not our
intention to perfectly reproduce experiments. some differences can be seen, espe-
cially in a lincar elastic regime. In turn, the softening behaviour of hecams was
properly captured. The maximum caleulated force was equal to 2,945, 5,185 and
8.784 N for the small. medium and large beam, respectively. They were similar to
the values obtained in experiments. Thus. a strong size effect in concrete beams
(expressed by the increase of the load bearing capacity with decreasing size) was
also properly reproduced.

Finally. biaxial compression was tested (o simulate discrete shear zones. The
specimen of 4 cm wide and 14 ¢m high was loaded via imposed vertical dis-
placements on the top edge. The following material parameters were assumed:
£ =50 MPa. v = 0.3. internal friction angle ¢ = 207, dilatancy angle ¢ = 0°. maxi-
mum cohesion ¢, = 30 kPa. residual cohesion ¢,,., = 1 kPa and softening modulus
H = 10 MPa. The penalty stiffnesses were equal to Ky = 5 GPa and K¢ = 0.5 GPa.

The stress averaging length was /,, = 0. The starting point of the shear zone was
located at the left edge (weak spot). Three meshes with 4-node quad elements were
defined with 224, 896 and 2.016 clements for the coarse. medium and f(ine mesh.
respectively. The obtained force-displacement curves are presented in Fig. 3a.
Identical responses were achieved. The inclination ol a shear zone was also properly
reproduced (Fig. 3h).

4 Conclusions

The numerical results with the aid of the eXtended Finite Element Method have
shown that this method is able to properly reproduce tensile eracks and shear zones
as discontinuities in the displacement field under different loading conditions.

The present research activity is focused on combining XFEM with continuous
cracks/shear zones descriptions using elasto-plastic and hypoplastic constitutive
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laws with non-local softening to describe the entire [ailure mechanism. More
advanced boundary value problems with localization will be analysed.
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Discrete Modelling of Micro-structural
Phenomena in Granular Shear Zones

Michal Nitka, Jacek Tejechman and Jan Kozicki

Abstract The micro-structure evolution in shear zones in cohesionless sand for
quasi-static problems was analyzed with a discrete element method (DEM). The
passive sand failure for a very rough retaining wall undergoing horizontal transla-
tion towards the sand backfill was discussed. To simulate the behaviour of sand.
the spherical discrete model was used with elements in the form of rigid spheres
with contact moments.

1 Introduction

Earth pressure on retaining walls is one of the soil mechanics classical problems.
In spite of intense theoretical and experimental rescarch works over more than
200 years, there are still large discrepancies between experimental results and rel-
evant theoretical solutions. The reason is the complexity ol deformation ficld in
granular bodies. especially near the wall. created by spontancous emergence of
shear localizations in a form ol single or multiple narrow zones—the fundamental
phenomenon characteristic for a granular material at shear delformation,

The patterning ol shear zones is usually not taken into account in enginecring
caleulations due to the Tack ol the basic knowledge on the phenomenon. which
gives some practical importance to the research described in this paper. Its objective
Is Lo investigate. using the discrete element method DEM. the guasi-static evolution
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