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Preface

Theoretical physics makes extensive use of models to test and . ‘lop
intuition. In non-relativistic quantum mechanics the principal souice of
insight is provided by the study of suitably chosen potentials. However,
such an approach can be of little value in relativistic quantum mechafiics.
Instead the Feynmar integrals of perturbation theory have provided a
rich testing ground for assessing dynamical conjectures. The method is
unashamedly heuristic but it commands respect because Feynman
perturbation theory gives a formal solution of the requirements of analyti-
.city and unitarity. These principles are believed to provide the essential
kinematic setting for relativistic quantum mechanics. It is true that recent
ideas of confinement, and of the role of non-perturbative classical solutions
of field theory, have suggested important aspects of relativistic quantum
mechanics that are not to be seen in Feynman integrals. Nevertheless the
method retains its power to act as a guide to the answer of many dynamical
questions. In particular it remains an indispensable tool to investigate
the fundamental interactions of quarks and gluons, a role which has been
given an enhanced respectability by the elegant notion of asymptotic
freedom for non-Abelian gauge theories.

While perturbation theory continues to be an important model,
eliciting its guidance is sometimes a formidable analytic task. An important
advance was made when Academician Gribov introduced hybrid models,
based on Sudakov parameter methods. Not only are these models in many
cases easier to calculate but also their largely non-perturbative character
makes their conclusions stand on firmer ground. The technique pioneered
by Gribov has proved a fruitful source of model making for many physical
regimes. One of its most important uses has been to provide a covariant
and non-perturbative formulation of the parton model. This model
describes the substructure within hadrons which appears to be manifest in
deep inelastic scattering reactions of all kinds. Such processes, character-
ised by high energy and large momentum transfer, probe the constituents
out of which hadrons are made. They provide much of the detailed
evidence for the quark structure of matter.
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Xii PREFACE

This monograph seeks to provide an introduction to these types of
model making. Its aim is to explain the basic ideas in a form accessible to
graduate students and other readers who have acquired a first knowledge
of quantum field theory and basic particle physics, including the elements
of Regge theory. I believe that it describes all major calculational techni-
ques together with sufficient physical applications to illustrate their
utility. No attempt has been made to be encyclopaedic, for an exhaustive
treatment of every application would have created a volume too large
for the simple pedagogic purpose intended. For example the parton model
is discussed in a way which exhibits its physical structure but which
avoids commitment to details which are still a matter of unresolved
phenomenological debate. Similarly, on the theoretical side 1 have been
content to illustrate the connection of the ideas presented with Reggeon
field theory and with K. Wilson’s operator product expansion, without
developing either subject in detail since each is really an autonomous
discipline in the regime it describes.

1 am very grateful to Dr P. V. Landshoff and Mr W. J. Stirling for
reading an early draft and making valuable comments, to Dr I. G. Halliday
for useful suggestions, to Miss Sandra Evans for deciphering my hand-
writing and typing the manuscript and to Mr C. Chalk for drawing the
many figures. I would also like to thank the staff of the Cambridge Univer-
sity Press for their help and care in the preparation of this book.

J. C. POLKINGHORNE



Summary of analytical techniques

™

In this monograph we describe a number of mathematical techniques.
They are employed in appropriate physical contexts but often they are
capable of much wider application than can be illustrated in a book of
this size. The aim of this summary is to give an indication of ‘these
techniques, and the sections in which they are developed. in the hope that
this will prove useful to a reader in search of a line of attack on a problem.

The basic method for evaluating Feynman integrals is symmetric
integration (section 1.2). If numerator factors are present the use of
auxiliary momenta as dummy variables is often helpful (section 1.3). A
technique for handling logarithmic factors is known (section 3.3, equation
(3.3.28)). Sometimes it is convenient to rewrite the loop momentum
integrals as integrals over invariants (section 3.7). Ways of handling
O-functions and d-function constraints are also available (section 4.4).

The asymptotic behaviour of integrals can sometimes be determined by
direct integration by means of formulae like (2.1.7) of section 2.1. This
section describes the important notions of natural behaviour, end point
contributions and pinch contributions.

A powerful general method for treating end point contributions is
provided by Mellin transforms (section 2.2). Key ideas are scaling trans-
formations (section 2.3), disconnected scaling sets (section 2.3), indepen-
dent scaling sets (section 2.3) and singular configurations- (section 2.4).
Multiple Mellin transforms (section 2.9) can be used to discuss limits in
several variables.

Pinch contributions are discussed in section 2.6, where it is also ex-
plained how they can be evaluated by using end point techniques. An
example of behaviour governed by a mixture of end points and pinches
1s given in section 2.7.

The treatment of divergences by dimensional regularisation is discussed
in section 2.5 and the effect of divergences on asymptotic behaviour
illustrated in section 3.3.

The determination of momentum flows associated with scaling

xiii



Xiv SUMMARY OF ANALYTICAL TECHNIQUES

sequences is given in section 2.8, where the eikonal approximation is also
worked out. 55

Sudakov parameters are defined in section 3.1. The importance of
contour closing arguments in determining the significant range of values
of Sudakov parameters in high energy regimes is illustrated in section 3.2.
In section 3.3 a modified Sudakov representation with massless momenta
is defined (see (3.3.13)) and in section 3.4 an alternative and universally
powerful parametrisation for constituent momenta almost parallel to
parent hadron mementa is written down ((3.4.3) et seq.).

A method by which Fourier transforms can be used to specify general
analytic properties is given in section 3.6 (see (3.6.8) ). The way i¢ prescrip-
tions for internal invariants are specified by the ie prescriptions for external
invariants is explained in section 4.2.
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1
Feynman diagrams *

1.1 Introduction

Relativistic ‘quantum mechanics is a rich and intricate theory. It has
defied general solution, so that its study has required recourse to models.
These are chosen in the hope of reproducing the behaviour expected of
the true theory in some appropriate extreme regime. Examples of such
regimes are the Regge regime of high energy scattering at fixed momentum
transfer (see Collins, 1977) and the deep inelastic scattering regime, in
which the transfer of large momentum by weak or electromagnetic
currents probes the constituents of hadronic matter (see Feynman, 1972).
The results obtained from such models are of two kinds. Firstly the model
may suggest that the scattering amplitude is constrained to take a restricted
functional form in terms of the relevant variables. Examples drawn
from the two regimes mentioned are, respectively, Regge pole behaviour
s*® (see section 2.1 et seq.) and the Bjorken scaling law v~ 'f(2v/ — ¢?)
(see sections 2.10, 3.2). In fact more elaborate models suggest modifications
to both these formulae (see sections 2.7 and 3.3) but the insight afforded
by the simplest model is a valuable starting point for the discussion of
each regime. Such kinematic results represent a stable component in
our understanding of elementary particle physics. The second type of
result sometimes extracted from the discussion of models is dynamic in
chiracter. It will try to predict the specific form of such functions as
a(t) or f(2v/ — g*)in terms of some precise physical mechanism. Clearly the
successful accomplishment of this task is of the highest interest. However,
in many regimes its attempt is somewhat ambitious in relation to current
physical understanding and such results are liable to extensive revision
as theory and experiment advance. The chief emphasis of this monograph
will be on kinematic results of the first kind.

The oldest model used successfully to gain an insight into aspects of
relativistic quantum mechanics is provided by the Feynman integrals of
perturbation theory (see, for example, Bjorken & Drell, 1965). Interest in
this model, and the methods associated with it, has recently been enhanced
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by the ideas of asymptotic freedom and the quantum chromodynamic
theory of strong interactions (see Politzer, 1974). In such gauge theories
the running coupling constant can be shown to become small like (In v)~ !
when all variables are large like v. Thus perturbation theory acquires
a specific role in such theories at high energy.

Of course Feynman integrals only provide a model. However small
the coupling constant may be there is no proof that the series is literally
convergent. Nevertheless the perturbation series is formally a solution of
the analytic and unitary properties which provide a basis for relativistic
quantum mechanics (see Eden, Landshoff, Olive & Polkinghorne, 1966).
Even here we must enter a note of caution. Feynman integrals have analytic
and unitary properties expressed in terms of the particles associated with
the propagators appearing in them. For quantum chromodynamics
this means that they are expressed in terms of quarks and gluons. However
the particles that figure in the S-matrix of the observable world are the
hadrons. The relation between these two descriptions can only properly
be understood when the bound state problem and confinement have
been solved. Surely the eventual mastery of these problems will take us
outside perturbation theory.

A partial way round this difficulty is afforded by the second model we
are about to describe. Nevertheless Feynman integrals must retain their
value as a guide to the fundamental interactions between quarks and
gluons themselves (see, for example, the discussion of section 3.3). Their
use is frankly heuristic but they have proved so powerful and convincing a
guide to intuition that Feynman integrals have sometimes been described
as a ‘theoretical laboratory’ in which conjectures on relativistic quantum
mechanics can be tested. The second chapter of this monograph is intended
as a handbook to the-use of the apparatus of this laboratory.

The second main class of model of high energy processes stems from
the work of Gribov (1968). Its earliest application was to Regge theory
but later the method was used by Landshoff, Polkinghorne & Short (1971)
to give a covariant formulation of the parton model of deep inelastic
processes. Its nature can be illustrated by considering the process of
fig. 1.1.1. The two thick external lines represent incident hadrdns. They
interact through the emission and scattering of constituents (or partons)
corresponding to the lines 1 and 2 of the figure. The unshaded bubbles
represent amplitudes for the emission of the partons, leaving a ‘core’
or residue behind. The shaded bubble corresponds to the scattering
amplitude for the interaction of the two partons. These three bubbles
are not to be thought of in a Feynman integral way at all. They are complete



INTRODUCTION 3

o™

FiGure 1.1.1 Constituent scattering.

(non-perturbative) subamplitudes for the subprocess (emission or scatter-
ing) which they represent. The kinematics of the overall process will
constrain them to be evaluated in some specific regime. Many examples
of this will be given in Chapter 3. Part of the specification of the model
will include the stipulation of how the subamplitudes are to behave in
their respective regimes. For example the shaded bubble might represent
quark—quark scattering at high energy and large momentum transfer.
It will be necessary then to have an ansatz for the behaviour of the ampli-
tude in this regime. (Almost certainly this would be derived from applying
perturbation theory analysis to quantum chromodynamics, so that the
two models are closely interrelated.)

The Gribov approach is a hybrid one, for the subamplitudes are linked
together by Feynman propagators associated with the interacting consti-
tuents. For example, the lines 1 and 2 of fig. 1.1.1 correspond to propagators
of this type. Each high energy process modelled in this way will corres-
pond to external momenta with large components in an appropriate
frame of reference. The role of the propagators is to carry the flow of
this large momentum through the interaction. The calculation of the effects
of this flow is greatly facilitated by the use of Sudakov (1956) parameters.
These give an expansion of all internal momenta in terms of the important
external momenta. They thus facilitate a convenient covariant separation
with large and small components. Full details of these techniques are
given in chapter 3.

As far as possible the two main chapters, 2 and 3, are written in a self-
contained way so that they are capable of being read independently of
each other with the minimum of cross-reference. Chapter 2 may appear
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predominantly mathematical in character, for though it obtains many
results of clear physical significance it does so by techniques which can
be used to extract the asymptotic behaviour of functions defined by
integrals, be they of Feynman form or otherwise. These methods are
capable of systematic exploitation but their economic application -
particularly to the physically important case of particles with spin—
requires a clear understanding of the dominant pattern of momentum
flow in the Feynman diagram. (This is emphasised particularly in sections
1.2 and 2.8.) This fact forms the link with the more obviously physical
approach of chapter 3. When the momentum flow is properly understood
the methods of chapter 3 are often easier to apply and they carry greater
conviction because of their largely non-perturbative character.

Mueller (1970) has taught us how to use a generalised optical theorem
to calculate cross-sections by taking discontinuities of scattering ampli-
tudes in suitable variables. In simple cases such discontinuities are readily
evaluated by elementary means. In chapter 4 we have collected together
some more advanced discussion of discontinuities, making use of tech-
niques drawn from both chapter 2 and chapter 3.

1.2 Feynman integrals and symmetric integration

An account of the origin of Feynman integrals in relativistic time-ordered
perturbation theory can be found in introductory texts on quantum
field theory (for example, Bjorken & Drell, 1965). In this section we shall
consider only the simplest non-trivial example of a field theory, given by a
real scalar field ¢ (x) of mass m interacting with itself through a term

— g 4°(9/3! R i )
in the Lagrangian. In the succeeding section we shall begin the considera-
tion of more complicated and realistic theories involving particles with
spin. These theories have additional complicating features not present in
¢* theory but the latter provides-a convenient illustration of many

simple properties common to allexpansions in terms of Feynman integrals.
The S-matrix for the scattering process may be written

S=1+I1R, (1.2.2)
and the T-matrix is then defined in terms of the R-matrix by the equation
Pig- Put|RIPri- - P> = @) 6L = XP)Prg- - Put| TIPyi- - P

(1.2.3)
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The momenta p,;...p,,; correspond to an initial state with m particles, _
and the momenta p“. p,¢ to a final state with n particles. Each Feynman
integral contributing to T can be associated with a Feynman diagram.
Each diagram has external lines carrying the initial and final state mo-
menta, there being one such line for each particle in the process. In
addition the diagrams contain internal lines which correspond to the
so-called virtual particles which mediate the interaction. Lines meet in
trilinear vertices (corresponding to the trilinear interaction (1.2.1)).
Internal lines must be connected to a vertex at both ends (since virtual
particles are emitted and then reabsorbed) while external lines are only
connected at ore end (corresponding to the interaction in whiglL the
external particle is absorbed or emitted). These somewhat involved -
statements are illustrated by the examples of fig. 1.2.1 for the two particle—
two particle scattering,

Py + Py = P, + P (124)

(where we use the transparent notation of representing a particle by its
four-momentum).

The momenta flowing in the internal lines are constrained by the require-
ment of four-momentum conservation at each vertex. The satisfaction
of these constraint equations is analogous to a Kirchoff's law problem in
electrical networks. The general solution is given in terms of [ circulating
loop momenta associated with the | independent loops of the diagram.
For example in fig. 1.2.1a there is just one such loop with k the loop
momentum, while in fig. 1.2.1b there are two independent loops with
momenta k, and k, respectively.

Every topologxcally distinct diagram constructed in this way represents
a contribution to i(2n)*8().p, — Y p;) (T given by a Feynman integral
specified by the following rules

ti) atermi/(2n)* 1/(g> — m* + ie)for each internal line carrying momen-
tum g. The infinitesimal i is required to define how the pole at g> = m?

(a) (b)
k + p, ki +p, ks + p
P P2 Py P2
k k+p —p; k, ky — k, ky +p —p2
Pa k — pa P3 Pa ki — Pa k2 — ps Ps

FIGURE 1.2.1 Typical Feynman diagrams.
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is to be treated. The internal momenta g are linear combinations of the
external momenta p and the loop momenta k, as in fig. 1.2.1.

(ii) a term — i(3.2m)* 64 (3 q) for each vertex, where ) q is the algebraic
sum of the momenta at the vertex. These d-functions enforce energy-
momentum conservation at each vertex and it is immediately possible
to factor out from them the (27)*8(3 p, — Y p;) which enforces overall
energy—momentum conservation for the process.

(iii) an integral [d*k for each independent loop momentum in the
diagram.

(iv) a symmetry factor S~ ! for the whole diagram, where S is the number
of different ways in which the internal lines can be arranged with the
external lines fixed. For example, S is 1 for the diagrams of fig. 1.2.1
but 2 for fig. 1.2.2 because of the possibility of interchanging the two

internal lines.

FIGURE 1.2.2 A diagram with S # 1.

(In some books (e.g. Bjorken & Drell, 1965) the rules are given in a
form which distributes the factors of 2n differently. The form given above
is quite general and will hold for theories with trilinear or quadrilinear
vertices. The other prescriptions are specific to the case of trilinear vertices.)

Symmetric integration

A diagram with | independent loops and n internal lines will
have associated with it an integral which is proportional to

lim |d*k,...d*k/[] (g> — m® +ie). (1.2.5)

&—0 re=i

For convenience we have omitted writing the numerical factors which
can be read off from the rules given above. The next task is to perform the
integrals over the loop momenta. .

An indispensable preliminary is the combination of denominators
in (1.2.5) by using Feynman’s identity

n—l)'J‘da da 6(20:—1)'

T C(1.26)

dd,..d,
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In passing we may note the useful generalisation of (1.2.6)

1 _(n+2rl.-—l)! e de, 63— 1)
d}”'d;“’...d"l“" N, n 0 [Zaidi]n+zr,

[Ir!

i=1

For integral r, this can be proved from (1.2.6) by differentiating with
respect to the 4. It is also true for general r; provided the factorials are
interpreted via the gamma function: n!=I'(n+1). -

Although applying (1.2.6) to (1.2.5) appears to introduce a further
complication in thc form of an auxiliary Feynman parameter a, associated
with each mtema] line, we shall find that it enables the loop momenta
k; to be mtegrated out.

The expression (1.2.5) becomes

fl [Tdx (3 x— I)I_]J-d“kj
0
[Ya(g? —m?) +ie]”

where there is now a single denominator. The gs are linear combinations
of the loop momenta k and the external momenta p so that the denomina-
tor in (1.2.8) can be written as

V(p.k,a) =Y a,(g> — m*) + ie
=k" Ak —2k"Bp+ (p"I'p — o) + ie, (1.2.9)

. (1.27)

™~

I'(n) (1.2.8)

where
o=Yam?. (1.2.10)

If there are | independent loop momenta and e external lines (and thus,
by overall momentum conservation, e — 1 independent external momenta)
Ay B and I are respectively [ x [, I x (e— 1), and (e — 1) x (e — 1) matrices.
Their elements are linear in the as and the matrices act on row and column
vectors made up of the / independent loop momenta (k) and the e — 1
independent external momenta (p). The superscript T represénts the
transpose in matrix space. In these row and column vectors each entry isa
momentum and is thus itself a Lorentz vector. Thus the first term of
(1.2.9) written out fully takes the form of a multiple sum over matrix and

Lorentz indices
1 3
kTAk = Z Z kA,

iL,j=1u=0

(1.2.11)

ij JI"
and similarly for the other terms.

-



