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A casual preface

In einem unbekannten Land

vor gar nicht allzu langer Zeit

war eine Biene sehr bekannt

von der sprach alles weit und breit . . .

To Maya

About ten years after Manin’s lecture notes “Lectures on zeta functions and
motives (according to Deninger and Kurokawa)” (dated 1995), and fifty years af-
ter Tits’s influential paper “Sur les analogues algébriques des groupes semi-simples
complexes” (1957), in which buildings over a “field with one element” F; are de-
scribed in order to see symmetric groups as Chevalley groups over this “field,” the
first papers got published in which scheme theories over the non-existing object I
were developed. One fundamental paper is Deitmar’s paper “Schemes over F,” in
2005 (inspired by Kato’s log schemes); a year before, Soulé already published his
Fi-approach to varieties in “Les variétés sur le corps a un élément.”

Other researchers such as Borger, Connes, Consani, Kurokawa, Lorscheid,
Manin, Marcolli, Toén, and Vaquié contributed further to this rapidly emerging
theory, and this stream of thoughts eventually culminated in the very recent mini-
symposium “Absolute Arithmetic and Fi-Geometry” at the 6th European Congress
of Mathematics (Krakéw, Poland) in 2012, organized by myself. The goal of the
mini-symposium itself was to present the state of the art of this mysterious theory:
speakers were Lieven Le Bruyn, Oliver Lorscheid, Yuri I. Manin, and myself as an
extra.

Soon after, the idea grew to assemble the talks into a proceedings volume, and
later Yuri Manin convinced me to see it bigger, and to aim rather for a proper
monograph with chapters by various authors, so as to provide the first book on
the subject of the mythical beast F;. And this volume is the outcome.

The book. The book is divided into four main parts:
(1) Combinatorial Theory—which contains one chapter (by myself);

(2) Homological Algebra—also containing one chapter (by Deitmar);

(3) Algebraic Geometry—with chapters by Borger, Le Bruyn, Lorscheid, Manin
& Marcolli and myself (I refer to the table of contents for the precise titles);
and

(4) Absolute Arithmetic—containing one chapter (by myself).

The first chapter should be seen as a combinatorial introduction on the one hand,
and as a description of various combinatorial and incidence geometrical aspects of
the theory on the other.
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Deitmar’s chapter paves a solid base for Homological Algebra of “belian cat-
egories” (certain non-additive categories like categories of modules of Fi-algebras
or Fi-module sheaves in various F-theories).

In Borger’s chapter, the author extends the big and p-typical Witt vector func-
tors from commutative rings to commutative semirings (and explains its connec-
tions with Fy-theory).

Le Bruyn explores the origins of a new topology on the roots of unity fi.. intro-
duced and studied by Kazuo Habiro in order to unify invariants of 3-dimensional
homology spheres. He also seeks a meaning for the object Spec(Z) over .

Lorscheid reviews the development of Fi-geometry from the first mentioning
by Jacques Tits in 1956 until the present day. After that he explains his theory
of blueprints in much depth (describing various connections with other scheme
theories over IFy).

Manin and Marcolli answer a question raised in the recent paper “Cyclotomy
and analytic geometry over F;” by Manin, by showing that the genus zero moduli
operad {HU‘,H.]} can be endowed with natural descent data that allow it to be
considered as the lift to Spec(Z) of an operad over Fy. (They also describe a
blueprint structure on {H(,,,,}.)

In my second chapter I first review Deitmar’s theory of monoidal schemes:
it is then explained how one can combinatorially study such schemes through a
generalization of graph theory. In a more general setting I introduce “Y-schemes,”
after which T study Grothendieck’s motives in some detail in order to pass to
“absolute motives” and “absolute zeta functions” (after Manin). In a last part of
the chapter, I describe a marvelous connection between certain group actions on
projective spaces and F;-theory.

Finally, I mention some aspects of “Absolute Arithmetic” in my last chapter,
which may be considered as an appendix to the first three parts of the book.

Acknowledgments [ want to vividly thank the authors (in alphabetical order:
Jim Borger, Anton Deitmar, Lieven Le Bruyn, Oliver Lorscheid, Yuri Manin and
Matilde Marcolli) for making the editorial process very pleasant. I also wish to
express my deep gratitude to Manfred Karbe of the EMS Publishing House for
helping me at various issues, and Filippo Nuccio for a splendid and energetic
editing job.

Famous last words As for those readers who want to know what paintings of
Velazquez and Bacon are doing in this monograph—just think of the Weyl functor.

Koen Thas
Ghent, June 2013/June 2015
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1. Introduction

We start this chapter by elaborating on ideas which were hatched from some sem-
inal remarks made by Tits in his early paper “Sur les analogues algébriques des
groupes semi-simples complexes” (1957) [20].

1.1. Projective Fi-geometry. When considering a class of incidence geometries
which are defined over finite fields take for instance the class of finite classical
buildings of a fixed rank and type (we refer to later sections for a formal explana-
tion of these notions) it sometimes makes sense to consider the “limit” of these
geometries when the number of field elements tends to 1. As a star example, let
the class of geometries be the classical projective planes PG(2.K) defined over
finite fields K. Then the number of points per line of such a plane is

K|+ 1, (1)

so in the limit, the “limit object” should have 141 points incident with every line.
On the other hand, we want the limit object still to be an axiomatic projective
plane, so we still want it to have the following properties:

(i) any two distinct lines meet in precisely one point;
(ii) any two distinet points are incident with precisely one line (the dual of (i));

(iii) not all points are on one and the same line (to avoid degeneracy).

It is clear that such a limit projective plane “defined over F;” should be an
ordinary triangle (as a graph). So it is nothing else than a ehamber in the building
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of any thick projective plane. Note that projective planes precisely are general-
ized 3-gons, which are also going to be defined later.

Adopting this point of view, it is easily seen that, more generally, a projective
n-space over F; should be just a set X of cardinality n + 1 endowed with the
geometry of 2¥: any subset (of cardinality 0 < 7+ 1 < n + 1) is a subspace (of
dimension 7). In other words, a projective n-space over Iy is a complete graph
on n + 1 vertices with a natural subspace structure. It is important to note that
these spaces still satisfy the Veblen Young axioms, and that they are the only such
incidence geometries with thin lines.

Proposition 1.1.1 (see, e.g. Cohn [3] and Tits [20]). Let n € NU {—1}. The
combinatorial projective space PG(n,Fy) = PG(n,1) is the complete graph on
n+1 vertices endowed with the induced geometry of subsets, and Aut(PG(n,[F,)) =
PGLn—i-I(FI) = Sn+l-

Proof. We already have obtained the geometric part of the proposition. As for
the group theoretical part, the symmetric group on n + 1 letters clearly is the full
automorphism group of PG(n, 1). |

It is extremely important to note that any PG(n,K) with K a division ring
contains (many) subgeometries isomorphic to PG(n,F;) as defined above; so the
latter object is independent of K, and is the common geometric substructure of all
projective spaces of a fized given dimension:

& {PG(n,K) | K division ring } — {PG(n,F;)}. (2)

Further in this chapter, we will formally find the automorphism groups of F-
vector spaces through matrices, and these groups will perfectly agree with Propo-
sition 1.1.1. We will also investigate other examples of limit buildings, as first
described by Tits in [20]. In fact, we will look for a more general functor & (called
Weyl functor for reasons to be explained later) from a certain category of more
general incidence geometries than buildings, to its subcategory of fixed objects
under 7.

Note that over IFy,

PIL, 4 (Fi) 2 PGL, 41 (F1) 2 PSL, 4 (F;) (3)
where PT'L(-) denotes the projective semilinear group.
1.2. Counting functions. It is casy to see the symmetric group also directly as
a limit for |[K| — 1 of linear groups PG (n,K) (with the dimension fixed). The

number of elements in PG(n, K) (where K = F, is assumed to be finite and ¢ is a
prime power) is

((1n+l o 1)(l1n+l o {1) . ((]u+l . (1”)

= =(q—1)"N(q) (4)
qg—1
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for some polynomial N(X) € Z[X], and we have
N(1) = (n+1)! = [Supal- (5)

Now let n,q € N, and define [n], =1+ ¢+ ---+¢"~'. (For q a prime power,
[n], = |PG(n.q)|.) Put [0],! = 1, and define

[n]g! i= [1]4[2]4 - -« [nlq- (6)

Let R be a ring, and let 2.y, ¢ be “variables” for which yx = gzy. Then there
are polynomials [-“'1 in ¢ with integer coefficients, such that

. " n el
(e +y)" = [,\J aty"h, (7)
],

k=0

Then [ ] g
n nj,!
), = .

and if ¢ is a prime power, this is the number of (k — 1)-dimensional subspaces of
PG(n—1,q) (= |Grass(k,n)(F,)|). The next proposition again gives sense to the
limit situation of ¢ tending to 1.

Proposition 1.2.1 (see, e.g. Cohn [3]). The number of k-dimensional linear sub-
spaces of PG(n.Fy), with k < n € N, equals

n+1 n! n+1
= —_— = (
[k + l] o (n—=k)K! [k + 1]. ©)

Many other enumerative formulas in Linear Algebra, Projective Geometry, etc.
over finite fields F, seem to keep meaningful interpretations if ¢ tends to 1. and
this phenomenon (the maintenance of various interpretations) suggests a deeper
theory in characteristic one.

1.3. The Weyl functor. In this chapter, we will consider various categories C
of combinatorial objects, and in a first stage these objects will come with certain
field data (later we will also consider categories where no obvious field data are
available). We will look for a functor &/ which associates with the objects o of C
interpretations of o over the field with one element, Fy, keeping in mind that F,
does not exist, but &/ (o) does. In all those categories, expressions of the form

(0) + field data (10)

make sense, in that the knowledge of «/(0) together with field data will single
out uniquely defined objects in the «/-fiber of o. In principle, many objects in
C could descend to some .7 (0), but with additional field data, we can point to
a unique object. Think, for instance, about the category C of projective spaces
over finite fields with natural morphisms; applying &/ to o = PG(n,F,) yields
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the aforementioned geometry PG(n, 1) which is independent of IF, so the &/-fiber
consists of all finite n-dimensional projective spaces. But giving the additional
data of a single field yields a unique projective space coordinatized by this field.
So the functor &/ comes with a number of base extension arrows to fields, and
together with these arrows, the original theories can be reconstructed from below.

Since we will consider many different categories C, we want &/ to be defined
in such a way that it commutes with various natural functors between these cate-
gories, an example of this principle being the diagram

o/

{PG(n.F,) for varying n,q} — {PG(n,F) for varying n}  (11)

| |

{PGL, (q) for varying n,q} —————— {S,,; for varying n}

which we have already considered.

2. BN-Pairs and the Weyl functor

Before introducing the general concepts of building and BN-pair, we study the
standard example of projective spaces (from the building point of view).

2.1. Projective space. Let R be a division ring (= skew field), let n € N, and
let V= V(n,R)=R" be the n-dimensional (left or right) vector space over R.
We define the (n — 1)-dimensional (left or right) projective space PG(n,R) as
being the set

(R"\{0})/ ~, (12)

where the equivalence relation “~7 is defined by (left or right) proportionality, with
the subspace structure being induced by that of V. (When n is not finite, similar
definitions hold.) The choice of “left™ or “right” does not affect the isomorphism
class. If R = [, is the finite field with ¢ elements (¢ a prime power), we also
write PG(n — 1,¢) instead of PG(n — 1,F,). Sometimes the notations P"1(R),
P 1(g), P }(R) and P""!(q) occur as well.

There is also a notion of aziomatic projective space, which is defined to be
an incidence geometry (defined later in this section) which is governed by certain
axioms, which are (of course) satisfied by “classical” projective spaces over division
rings. A truly remarkable thing is that Veblen and Young [24] showed that if
the dimension n — 1 of such a space is at least three, it is isomorphic to some
PG(n — 1,R). And this is well known not to be true when the dimension is less
than three.

2.2. Representing spaces as group coset geometries. Let P be a projective
space of dimension n over some division ring R. Consider any R-base B. Define a
simplicial complex (in the next section to be formally defined, and called “apart-
ment”) ¢ = ¢ (B), by letting it be the set of all possible subspaces of P generated
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by subsets of B, including the empty set. Define a (maximal) “flag” or chamber
in ¢ as a maximal chain (so of length n + 1) of subspaces in . Let F' be such a
fixed flag.

Consider the special projective linear group K := PSL,, ;| (R) of P. Then note
that K acts transitively on the pairs (¢'(B’), F’), where B’ is any R-base and F”
is a maximal flag in €(B’). Put B = K¢ and N = Kp: then note the following
properties:

(i) (B,N) = K;

(ii) put H =BNN <N and N/H = W; then obviously W is isomorphic to the
symmetric group S, on n + 1 elements. Note that a presentation of S,
is:

(i | s? =1id, (sisi41)” =id, (sis;)° =id for 1 <i,j <n+1, j#i£1). (13)

(iii) Bs;BwB C BwB U Bs;wB whenever w € W and i € {1,2,...,n+ 1};
(iv) s;Bs; # B forallie {1.2,..., n+1}.

Here, expressions such as BwB mean BwH B, where w is any representant of
wH = w.

Now let K = PSL,,,(R) be as above, and suppose that B and N are groups
satisfying these properties. Define a geometry %k p n) as follows.

(B1) Elements of Bk p ny are left cosets in K of the gronps P; which properly
contain B and are different from K,i=1,..., n+1;

(B2) two elements gP; and hP; are incident if they intersect nontrivially.

Proposition 2.2.1. %k p.n) is isomorphic to PG(n,R).

2.2.1. Low-dimensional cases. For dimension n = 1, our definition of ax-
iomatic space doesn’t make much sense. Here we rather start from a division
ring R, and define P, the projective line over R, as being the set (R?\ {0})/ ~,
where ~ is defined by (left) proportionality. So we can write

P={(0.1)}u{(1,0)|feR} (14)

Now PSL,(R) acts naturally on P; in fact, we have defined the projective line as a
permutation group equipped with the natural doubly transitive action of PSLy(R).
Defining a geometry as we did for higher-rank projective spaces, through the
(B, N)-pair structure” of PSLy(R), one obtains the same notion of projective
line.



