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Preface

With the rapid progress and development of mathematical statistical
methods, it is becoming more and more important for the student, the in-
structor, and the researcher in this field to have at their disposal a quick,
comprehensive, and compact reference source on a very wide range of the
field of modern mathematical statistics. This book is an attempt to fulfill this
need and is encyclopedic in nature. It is a useful reference for almost every
learner involved with mathematical statistics at any level, and may supple-
ment any textbook on the subject. As the primary audience of this book, we
have in mind the beginning busy graduate student who finds it difficult to
master basic modern concepts by an examination of a limited number of
existing textbooks. To make the book more accessible to a wide range of
readers I have kept the mathematical language at a level suitable for those
who have had only an introductory undergraduate course on probability and
statistics, and basic courses in calculus and linear algebra. No sacrifice, how-
ever, is made to dispense with rigor. In stating theorems I have not always
done so under the weakest possible conditions. This allows the reader to
readily verify if such conditions are indeed satisfied in most applications
given in modern graduate courses without being lost in extra unnecessary
mathematical intricacies: The book is not a mere dictionary of mathematical
statistical terms. It is also expository in nature, providing examples and put-
ting emphasis on theorems, limit theorems, comparison of different statistical
procedures, and statistical distributions. The various topics are covered in
appropriate details to give the reader enough confidence in himself (herself)
which will then allow him (her) to consult the references given in the Bibliog-
raphy for proofs, more details, and more applications. At the end of various
sections of the book references are given where proofs and/or further details-
may be found. No attempt is made here to supply historical details on who
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did what, when. Accordingly, I apologize to any colleague whose name is not
- found in the list of references or whose name may not appear attached to a
theorem or to a statistical procedure. All that should matter to the reader is
to obtain quick and precise information on the technical aspects he or she is
seeking. To benefit as much as possible from the book, it is advised to consult -
first the Contents on a given topic, then the Subject Index, and then the
section on Notations. Both the Contents and the Subject Index are quite
elaborate.

We hope this book will fill a gap, which we feel does exist, and will provide
a wseful reference to all those concerned with mathematical statistics.

E. B. M.
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CHAPTER 1
Basic Definitions, Concepts, Results,
and Theorems

§1.1. Probability Concepts

The collection of elements under investigation is called the population. An
experiment for which the outcome cannot a priori be determined, but is
known to be one of a set of given possible outcomes, is called a random
experiment. [Here it is assumed that if the same experiment is repeated any
number of times, then the outcome each time is again one of the outcomes in
the initial set of possible outcomes.] The set of all possible outcomes of a
random experiment is called the sample space and will be denoted by &. An
element w e & is called a sample point.

A family o of subsets of & is called a sigma-field if: (i) Ae .o/, then A° =
¥ — Ae sl (ii) Ay, A,, ... are pairwise disjoint sets in &/, thatis, ;N 4, = J
(null set) for all i # j, then | J2, A;€ /. An element 4 in o is called an event.
An element of the form {w} is called an elementary event.

With each event A € of, we associate a nonnegative function P(A), called a
probability (or probability measure), which satisfies: (i) 0 < P(4) < 1; (ii)
P(&) = 1; (iii) for pairwise disjoint events 4;, A,, ... in o, P(| 2, 4) =
Y2, P(A)). In particular, we note that & and ¢ are in o. & is called the
sure event and ¢(P(¢) = 0) is called the impossible event. The triple (¥, o, P),
consisting of the sample space &, the sigma-field ./, and the probability
measure P, is called a probability space. '

A and B are said to be independent events, if P(A n B) = P(A)P(B).
In general, A4,, ..., A, are said to be mutually independent if for any
subset {ij,...,i} of {l,...,n} with any 2<t<n, P4, n""NnA4)=
P(A;)... P(A;).

The conditional probability of A given B, is defined by P(A|B)=
P(A n B)/P(B), A, Be o for P(B) # 0. :
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{A;, A;, ...} is said to constitute a complete set of events if Ay, A,, ...
(e o) are mutually disjoirt and | J2, 4, = &. The set {4, 4,,...} is also
called a partition of the set ..

Poincaré’s Additive Theorem. For eny two events A;, A,esf, P(A, U A,) =
P(Ay) + P(Ay) — P(A4, " A;). The generalization of this formula for an
arbitrary finite number of events is immediate. For example,

, 3
P(A; w A, 0 Ay) = ; P(A;) — P(A; " Ay) — P(4; N 43)

— P(A; n A3) + P(A; n Ay N A,).

Bonferroni Inequality. Let A,, ..., A €</, then .

k
P(A4,nnA) 21— ) PA).
i=1

Total Probability Theorem. Let {A,, A,,...} constitute a complete set of
events (a partition of &) in . Then for any Be of, -

P(B) = ;P(BIA‘)P(A‘).

Bayes’ Formula. For P(B) # 0, we may write:
P(B|A)P(A)
Z“ P(BIA)P(4)

The Borel field 2 in R (real line) is the smallest sigma-field containing all
open intervals {x: a < x < b} in R. The Borel field #* in R* (k-dimensional
Euclidean space) is the smallest sigma-field containing all open k-rectangles
{(x15 ---» X%): O; < X S i B Dok} i RE

A random variable X is a function from &% to R such that the set
{w: X(w)e B} is in . for every Be . A vector X = (X, ..., X,) is called a
random k-vector if X;, ..., X, are random variables. [ We note, conversely,
that if {w: X(w)e B} is in o for every Be #*, then X,, ..., X, are random
variables.] The probability of the event {w: X(wje B} will be denoted by
P[X e B}, and is called the probability distribution of X.

X is said to be a discrete random variable if there exists a countable set of
points {X,,X,,...}, x,eRY i=1, 2, ..., such that ), P[X = x;] =1, and
P[X = x;] = f(x,) is called the probability mass function (or just probability
mass) of X. In particular, if X is a random variable having values of the form
a + bk, where @, and b > 0 are fixed real numbers, and k runs through the set
of values {0, 1, 2,...,n} or {0, + 1, +2,..., +n} for a finite or infinite, then X
is said to have a lattice probability distribution. For a random vector X if

-

P(4;|B) =
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"P[X =x] =0 for every xeR¥ then X is called a continuous ‘random k-
vector. If, in addition, there exists a nonncgatlve function f from (R, 4*) to
(R, %) such that

P[XeB] = f f(x) dx (ang P[XeR¥| = j f(x)dx = 1),
B R¥

then X is called an ~bsolutely continuous random k-vector. f(x) is called the
probability density fuaction of X. Throughout the bulk of this work, by a
continuous random k-vector it will mean an absolutely continuous random
k-vector.

Consider the interval {x < a} in %. Then P[X < a], denoted by F(a), is
called the cumulative distribution function (or just the distribution) of the
random variable X in question. Similarly, P[X; < ay,..., X; < q] = F(a),
a = (ay, ..., a,); will be called the joint distribution of X;..., X,.

Properties of F (x)

(1) 0K Fx) <

(i) I-‘(x) P(x)for x <

(1il) F(x + &) = F(x),e— +O that is, F(x) is continuous from the right.
(iv) Hm F(x) = F(+w)=1, = lim F{x)=F(—)=

xX—+oo X0

(v) If X is a continuous random variable, then
d . x
i F(x)=f(x),  dF(x)=f(x}dx, F(x)= f J(x) dx'.

(vi) If X is a discrete random variable taking values x, < x, <---, then
Flx)— F(x;-) = P[X = x;].

Properties of Fix,, x,)

(i) 0<Fix;,x)) <1

(l!) For X < xlh X2 < X'z, F(xlla xl2) + F(xl’ xz) 17 ,F(x’n xz) - F(xh xil) z
0. ,

(ii)) Flx; + & x;) = F(xq, X3), F{x;, X5+ &) = F(¥%;, x;) fore —-+0.

(iv) F(—o0,x;) =0, F(x;, —0)=0forall x,, x;eR.

(V) F(x,, 0) = Fy (x;) is called the marginal distribution of X,, and
F(oo, x,) = Fy (x,} is called the marginal distribution of X, X; and X,
are said to be independent if F(x, x;) = Fxl(xl}l-"g {x;)foralix,, x;€R,
and with an obvious generab:ratxoﬁ for more f.han two random vari-
ables: X,,..., X,. :

(vi) Let X =(X,, X,) be a random vector such that X, and X, are discrete
random variables taking, respectively, values x;,, X5, -..5 X231, X33, --..
We set P[{X, =x,,} n{X;=%;}] =pg Then ¥, Z: py=1 and
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Pi. = 3.; Pij» P.j = 2.; Py denote the marginal probability mass functions
of X, and X,, respectively. We note that the conditional probability
P[{X, = x;;}}{X; = x,;}] may be written as p;/p, ;. Also formally,

E[X,]= z‘:xnpi. = Ux,» o%(X,) = gxfipl. - l‘;,,
Cov(X,, X;) = z':;xntxszu — Hx,Hx,-

(vii) Let X = (X,, X;) be a continuous random vector. Then

bore d @
F(a,b) = I J. f(xy, x3) dx, dx,, ax, %, ——F(x,, x3) = f(x,, X3).
S 1

Also

Jx,(x)) = f_ Slxy, x3)dx; and  fy,(x;) = J‘_ S(xy, x5) dx,,

are called the marginal densities of X, , and X,. The conditional proba-
bility density of X, given that X, = x, is defined by f(x,|x;)=
S(xy, x3)/fx,(x3) for fx,(x;) # 0. We note that formally,

E[X,] = J xlfx,(xl) dx = py , az(X,) = J‘ x%fx.(xl) dx, — I‘i,,

- - 4

E[X,|X,] =v[ Xy f(xy]xz) dx,
b
Pla< X, <b|X, = %3] = J' dx,y f(x;]x,),

Cov(X,, X,) = J. j‘ xy X3 f(xy, X5) dxy dx; — py pix,.

Double Expectation. If E[|X|] < oo, then E[E[X|Y]] = E[X] for two ran-
_dom variables.

A number which maximizes the probability density or the probability
mass function of a random variable X is called a mode of the distribution of
X. A number Q,, called the ath quantile (0 < a < 1) of the distribution of a
random variable, is defined by P[X < Q,] < a < P[X < @,]. In particular,
for a = 0.5, Q, 5 is called a median of the distribution in question.

A random variable X, with distribution F,(x) is said to be stochastically
smaller than a random variable X, with distribution F,(x) if F,(x) = F,(x) for
all x, and with strict inequality holding for at least one x.

Consider two discrete random variables X,, X,, if P[ X, # X;] =0, then
we say that X, = X, with probability one. Similarly, if g(x) is a continuous
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function with the exception on a set §, such that P[ X &S] = 0, then g(x) is
said to be continuous with probability one. Quite generally, if a certain
relation holds identically with the exception for points in a set S with proba-
bility equal to zero, then the relation is said to hold P-almost everywhere or
to hold with probability one.

[Cf., Bickel and Doksum (1977), Billingsley (1979), Burrill (1972), Cramér
(1974), Fisz (1980), Fourgeaud and Fuchs (1967), Gnedenko (1966), Milton
and Tsokos (1976), Rényi (1970), Roussas (1973), Tucker (1967), Wilks
(1962).]

§1.2. Random Samples

Finite Population. Suppose every sample of size n that may selected from
the population has the same probability of being selected, then any such a
sample is called a random sample.

Infinite Population. A set {X,,..., X,} of independent random variables
each having the same population distribution is called a random sample of
size n. Throughout by a sample we mean a random sample.

A random variable g(X,,..., X,) which is a function of independent
identically distributed random variables such that if the sample yields X, =
Xyy..., Xy = X,, then g(x,, ..., x,) is uniquely determined is called a statistic.
[We note that a statistic cannot depend on any unknown parameters which
may characterize the distribution of the population.]

Let X, ..., X, be independent identically distributed random variables.
Then Y, is called the kth order statistic of X,, ..., X, if Y, is the kth smallest of
the X,, ..., X, observations. We note that ¥; < Y, <--- < Y,, where Y, =
min; X, ¥, = max; X;. The random variables Y,, ..., Y, are called the order
statistics of the sample X, ..., X,. Y, — Y, is called the sample range and Y,,
Y, are called the extremes of the sample. If X; # X; for all i #jin (1, ..., n),
then the rank R; of X is defined by the number N(i) of the X] less than X; plus
one: R; = N(i) + 1. If Xy;, ..., X,,; denote the X; equal to X; (including X;
itself), then the average rank or mid rank of X is defined by Y 7o, (N(i) + j)/m,
where N(i) is the number of the X less than X;.

A random variablé Q, is an ath quantile of the sample X, ..., X, if

[number of X; < Q,]/n < a < [number of X; < Q,]/n.

In particular, for o = 0.5, @y s = M is called the median of the sample. An
equivalent definition for the median is the following: M = [ w2+ Yni2y21/2
if n=even, and M = Y, if n=o0dd, where Y,, ..., ¥, are the order
statistics of the sample X, ..., X,.

The function £,(x) = [number of X; < x]/n is called the sample distri-
bution or empirical distribution.



