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PREFACE

Active and passive vibration control of structures form a topic of
very actual interest in many different fields of engineering, for ex-
ample in the automotive industry, in aerospace engineering (e.g. in
large telescopes) and also in civil engineering. The material presented
in this book tries to fill gaps between structural mechanics, vibrations
and modern control theory. It also establishes links between the dif-
ferent applications in structural control. In vibration control it is still
common practice to a large extent to regard the design of mechanical
structures and their damping and control as different topics, which
often are treated sequentially, with the design of the structure to be
carried out first, followed later by designing the active and passive
vibration control. Similarly, in the standard curricula at most uni-
versities, the mechanical modelling and the design of structures as
well as their control are treated as separate subjects. This book in-
tends to fill some of the gaps between these different issues. The
intention is to give a solid foundation of the mechanical modelling
and the vibration control for discrete and continuous structures, with
an emphasis on the interfaces of the different disciplines.

This book was written accompanying the CISM Course no. 418
entitled *Active and Passive Vibration Control of Structures ’ held in
Udine from May 27 to 31, 2013. Therefore it is directed to young
researchers, to doctoral students and also to engineers working in
fields related to structures, vibrations and control.

A thorough introduction into the relevant theory both of the me-
chanical modelling as well as of the vibration control theory are pre-
sented and the most important design goals are discussed. Various
strategies for modelling complex mechanical structures are given and
an introduction to active, passive and semi-active strategies for vi-
bration control are discussed. In a number of examples from different
areas it is shown that a comprehensive approach, in which both the
mechanical design problem and the development of suitable controls
are considered simultaneously, can present substantial advantages.

The organization of the book is as follows.

Chapter I, by PETER HAGEDORN (Technische Universitit Darm-
stadt, Germany), treats equations of motion for discrete and con-



tinuous mechanical systems laying the foundation for the creation of
control models.

Chapter II, by GOTTFRIED SPELSBERG-KORSPETER (Technische
Universitat Darmstadt. Germany). gives an introduction to varia-
tional principles in mechanics and control relating to mechanical mod-
elling and the development of control strategies.

Chapter IT1, by ANDRE PREUMONT, DAVID ALALUF and RENAUD
BASTAITS (Université Libre de Bruzelles, Belgium,). treat hybrid mass
dampers for mitigating the dynamic response of buildings.

Chapter IV, by ANDRE PREUMONT and BILAL MOKRANI (Uni-
versité Libre de Bruzelles, Belgium), discuss the theory of electromag-
netic and piezoelectric transducers and presents some applications in
structural control.

Chapter V, by ROBERT SKELTON (University of California San
Diego, United States), focuses on structure and design of control sys-
tems with an emphasis on the advantages of using matriz inequalities.

Chapter VI, by ADNAN AKAY (Bilkent Unwersity, Turkey) and
ANTONIO CARCATERRA (University of Rome, Italy), address the
physics and modelling of structural damping which is extremely im-
portant in almost every structural control problem.

Chapter VII. by RAINER NORDMANN (Technische Universitdt
Darmstadt, Germany). deals with active magnetic bearings, which.
can be used for control purposes in rotating machinery.

Summarizing. the material presented in this book will offer a uni-
fied view on active and passive control and the mechanical modelling
of structures presented from the point of view of experienced research-
ers with quite different perspectives.

The authors want to express their gratitude for the support of the
CISM organization. in particular to Professor Friedrich Pfeiffer for
chairing the course in Udine, and to Carla Toros for her tremendous
support in organizing it.

The authors sincerely thank Manuel Eckstein, who carried the
main burden of editing the manuscripts and coordinating the differ-
ent chapters. as well to Eduard Heffel, Matthias Heymanns, Henning
Spiegelberg and Andreas Wagner.

Peter Hagedorn
Gottfried Spelsberg-Korspeter
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Mechanical Systems:
Equations of Motion and Stability

Peter Hagedorn
TU Darmstadt, Darmstadt, Germany

Abstract The Chapter ‘Mechanical Systems: Equations of Motion
and Stability’ corresponds to the material presented in five lectures
given at the CISM Course no. 418. The first parts deal with the
form of the equations of motion of mechanical systems, in particu-
lar the linearized equations and the influence and importance of the
different terms (inertia terms. damping, gyroscopic terms, restoring
terms and circulatory terms as well as with their physical origin).
This is done both for discrete systems, and the corresponding mate-
rial is part of the recent book Hagedorn € Hochlenert, Technische
Schwingungslehre, Verlag Harri Deutsch, Frankfurt, 2012, as well as
for continuous systems, the material being adapted from Hagedorn
& DasGupta, Vibrations and Waves in Continuous Mechanical Sys-
tems, Wiley, Chichester, 2007. Almost all the material is presented
in typical elementary vibration courses. but here certain aspects
will be highlighted. which are not always stressed in basic vibra-
tion courses. The third part deals with Liapounov stability, the
material is from the author’s earlier book Hagedorn. Non-Linear
Oscillations, 2™ edition, Ozford Science Publications, 1988. The
material of these five lectures is used in the other lectures of the
course.

The author prepared most of the material in 2012 and 2013,
while staying at the University of Canterbury in Christchurch, New
Zealand. The author thanks the Department of Mechanical Engi-
neering of the UC for providing the infrastructure and assistance.

P. Hagedorn, G. Spelsberg-Korspeter (Eds.), Active and Passive Vibration Control of Struc-
tures, CISM International Centre for Mechanical Sciences
DOI 10.1007/ 978-3-7091-1821-4_1 © CISM Udine 2014



2 P. Hagedorn

1 Equations of Motion of Discrete Mechanical
Systems

In this lecture we will shortly recapitulate the form of the equations of
motion of discrete mechanical systems (which may of course be an approx-
imation of continuous systems). We will highlight certain aspects which,
although clementary. are not always stressed in basic vibration courses.

For a holonomic system of n degrees of freedom and generalized coordi-
nates

qz(‘/ls(l‘_’v"' JIH)T (1)

the equations of motion can be obtained from the LAGRANGE equations of
the second type, based on the Lagrangian

L=Y - (2)

where T is the kinetic energy and U the potential energy function (which
we assume may also depend on the time t). LAGRANGE's equations then
read
d oL 0L
ot qs g,

Qs (3)

where the Q. are the generalized forces not represented by the potential U.
For a large class of systems these equations can be written as

MG+ Gq+ Kq = f(q.q.1). (4)

The term f(q,q.t) contains for example the damping and other nonconser-
vative terms, as well as for example control forces. The linearized equations
(linearized about an equilibrium of the unforced autonomous system) can
then be written as

Mg+ (D+G)g+ (K + N)g = f(t). (5)

This linearized form of the equations of motion is usually employed to de-
velop appropriate active or passive vibration control. The control strategies
based on these linear models may then later be tested for the nonlinear
model.

In many cases, setting up the equations of motion using LAGRANGE’s
equations is not a practical approach and other methods may be more effi-
cient. The form of the equations will however be the same as above. Unless
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stated otherwise, we will assume the following properties for the matrices:

Mass matrix: M=M", M >0 (symmetric, positive definite)
Damping matrix: D=D", D >0 (symmetric, positive semidef.)
Stiffness matrix: K=K", K >0 (symmetric, positive semidef.)
Gyroscopic matrix: G = -G, (skew symmetric)
Circulatory matrix: N = —NT, (skew symmetric)

In this lecture and in the next one, we will discuss in some more detail
the significance of the different matrices for the behavior of the mechanical
systems.

We will first consider the free vibrations, i.e. the case f(t) = 0:

MG+ (D+G)g+ (K + N)g=0. (6)

1.1 The Eigenvalue Problem

Since (5) is a system of ode’s with constant coefficients, the exponential
ansatz

q(t) = reM (7)
is successful, leading to
[#M FAD+G)+ K + N] reM = Q. ®)
In order for (8) to be valid for all times, the condition
(XM +AD+G)+K+N|r=0 )

must be fulfilled. Equation (9) is the eigenvalue problem, and the sought
values of A and 7 are respectively the eigenvalues and the eigenvectors.

The eigenvalue problem is a linear homogeneous algebraic system in the
unknown vector r. A necessary condition for the existence of non-trivial
solutions in 7. is that the determinant of the coefficient matrix vanishes,
and this leads to the characteristic equation

dm,(sz +AD+G)+K + N) -0 (10)
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The left-hand side is a polynomial of degree 2n in A and can be written as
Ao A2 + o+ @A+ A+ ap =0. (11)

The 2n solutions \; (i = 1,2,...,2n) are real or appear in complex conju-
gate pairs, since all the coefficients aj are real. For each eigenvalue A; the
corresponding nontrivial eigenvector r; can then be calculated from

[A$M+,\,~(D+G)+K+N]r,=o. i=1,....2n. (12

We will not deal with the case of multiple eigenvalues with multiplicity
larger than the number of independent eigenvectors: the case of ‘semi-simple’
multiple eigenvalues will however play an important role in a later lecture.
Obviously the eigenvectors resulting from (12) can at most be determined
up to a multiplicative (complex) factor, since we found the eigenvalues by
setting the determinant of the coefficient matrix equal to zero and the rows
and columns of the coefficient matrix are therefore linearly dependent.

Ouly in very particular cases. matrix eigenvalue problems can be solved
analytically. As a rule. eigenvalues and eigenvectors will be numerically
calculated using appropriate numerical tools. For example MATLAB im-
mediately calculates the eigenvalues and eigenvectors with the command
polyeig(X+N,D+G,M). if the corresponding numerical values are attributed
to the matrices M. D, G, K and N.

Normalization of Eigenvectors It is often important to normalize the
cigenvectors, if only for example to compare numerical or experimental re-
sults. From (12) it is obvious that a complex eigenvalue will in general imply
a complex eigenvector r;, and that a real eigenvector can be found for each
real eigenvalue. Real eigenvectors can be normalized e.g. according to

r,Tr; =1 or r,»TMr, =1 (13a)

with respect to their magnitude or with respect to the mass matrix. Let r;
be a non-normalized eigenvector, then the corresponding normalized eigen-
vector 7; is

” 4 i (13b)
= —— or T = —. b
RV LS ' rI Mr,

This eigenvector is still not uniquely determined, as is obvious that the real
eigenvector 7; = —r; also fulfills the normalization. This is more involved for

complex eigenvectors, whose absolute value can be normalized in analogy
to (13a) with

vy =1 or r; Mr; = 1. (13¢)
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Here 7} is the complex conjugate transposed vector to r;. Since the normal-
ization of complex eigenvalues is less commonly discussed in the literature,
we will describe it in more detail. The normalization (13c¢) is here also ful-
filled by the complex eigenvector 7i=el%pr; for an arbitrary 3;. i.e. each
component of 7; can still be rotated in the complex plane by an equal but
arbitrary angle ;. The components of the real eigenvectors can in the same
fashion be rotated by the angle 7, remaining real, or by an arbitrary angle.
so that the eigenvectors become complex.

In order to obtain uniquely determined eigenvectors, so that the results
of different computations can be compared with each other, it is convenient
to fix the angle 3; conveniently. This can be done by choosing 3; so that
a complex eigenvector is reduced to a real form, if this is possible. As an
example, consider the eigenvector

r=a+jb (14)

with real part @ and imaginary part b, as well as its representation rotated
by an angle 3

7 = ¢’ (a+ jb) = (acos 3 — bsin 3) + j(asin 8 + beos 3)
=a+ jb. (15)

The angle 3 will now be chosen in such a way that the real part of 7 becomes
‘as large as possible’. We formulate this requirement by

maxa"

i

@ = max (acos 3 — bsin 3)"(acos 3 — bsin 3)

L

= mgu( a'a cos? 8 —2d"b cos Asin B+ b"b sin? B

T, — T e [
max [(-os 3 sin ,‘3][ @a b} [( o d] . (16)

—d'b bbb ||sing

i.e. by the maximization of a positive definite quadratic form with the cor-
responding eigenvalue problem in p

da—pu —a'b |[cos 0
[ —a'b bTb—u] [sind] h [0} ’ 17)

The two eigenvalues for (17) are

aa+b'b (d'a — bTb)*
Hi2 =
- 2 4

— (a'b)* . (18)
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Substituting the larger of the two eigenvalues po in (17) leads to the two
equations

(bTb —da+ \/(bTb — da)’ - 4(aTb)2) cos 3+ 2a"bsin 3 =0, (19a)

2a"beos B+ (aTa —b'b+ \/(aTa —bTb)’ — 4(aTb)2) sin3=0 (19b)

for the determination of cos 5 and sin 3. The two equations are of course
linearly dependent. but one should be careful in selecting one of the equa-
tions. For a"b=0 and a@'a=b"b both equations are identically fulfilled,
independently of the value of 3. In this case we choose 3=0. For a'b=0
and @'a>b"b both coefficients of the first equation vanish and the second
equation gives sin 3=0. For a"b=0 and a'a <b"b the first equation gives
cos =0, and both coefficients of the second equation vanish. For a"b#0
cither the first or the second equation can be used. Summarizing, one has

(0 for a'b=0, ad'a>b"b
tan § = { £© for a'b=0.da<b"b
a'a—-b"b (a'a — b"b)?
- -1 for a'b#0
2a"b 4(a"b)? ke

(20)

In case one desires to maximize the real part with respect to the mass
matrix, according to maxa'Ma, the matrix M is introduced in the scalar
products. A normalization of the eigenvectors with 4 according to (20)
subject to (13c), will therefore always result in a real representation of the
eigenvector, if this is at all possible. In order to make the normalization
completely unique, since (20) still permits a factor —1., one may for example
prescribe that the first non vanishing component of a be positive.

For many applications, the normalization according to (13) is completely
sufficient. Yet, for the comparison of different numerical results the deter-
mination of 3 will in some cases be necessary and a completely unique
normalization of the eigenvectors may be in order.

General Solution for Free Vibrations For distinct eigenvalues (\;#A\;)
(12) gives 2n linear independent solutions of the form =; . With complex
integration constants, adding the individual solutions leads to the general



Mechanical Systems: Equations of Motion and Stability 7

solution of (6) in the form

2n
q(t) =Y Kir;eM' (21)
i=1
The integration constants K; (i =1..... 2n) can be determined from the
initial conditions
q(0) = qo. q(0) = qo. (22)

For real initial conditions, g(t) will then also be real.

It may however be convenient to directly write (21) in real form. In
doing this we assume first that the eigenvalues are all complex. From (12)
one recognizes that for each pair of complex conjugate eigenvalues there is
a pair of complex conjugate eigenvectors, so that

Xinai = =0; & jai, Tinti = @i £ jb; (23)

holds. Next, we choose the integration constants in complex conjugate pairs
Ki=K]_ ; and write them as

1 ; 1 )
K; = S K;e'", Knyi = 51\'i g (24)

with the new integration constants K; and ~;. With this substitution, (21)
assumes the real form

i 1 ) ) . . 1 ) .
q(t) = Z 5 K (a; +Jbi)(_.-o,t+_1(wmt+m) + 5 K, (a; — jb;) e Out—ilwait+yi)

i=1

n
_ ZK‘ e—dit [al(cj(wd.Hrm) + F—j(w..,rh,))

i=1
+ jb; (@’(wd,t%—%) _ (,—,i(wdzl+'71))]
T -
= Z K; e %t [a. cos(wait + i) — b; sin(wg;t + '*,',-)] . (25a)
i=1

If the system does not have 2n complex eigenvalues, but only 25 complex
eigenvalues A; s (i=1,...,s) and 2(n—s) real eigenvalues \;
(i=2s+1,..., 2n) with the corresponding real eigenvector, one has

s 2n
q(t):ZK,_ (_.—o,/[a,i cos(wqit+7:) —bi sill(wd,‘t—l-'y,,;)]_;_ Z K eMt. (25b)
i=1 i=2s+l
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The behavior of the different particular solutions corresponding to the dif-
ferent ecigenvalues strongly depends in particular on the real parts of the
eigenvalues, as is well known. They determine the stability of the solutions
and of the system. An important aspect of (25) is that the eigensolutions in
general (when all the 5 are different from zero) are such that their different
coordinates vanish at different times. This is quite different in the particular
case which we examine next.

1.2 M-K-Systems

An important particular case is that in which the matrices D, G and N
vanish. The equations of motion are then of the form

Mg+ Kq=0. (26)

We will recapitulate their main properties and then later examine the way
in which the other terms in the equations of motion influence the solutions.

Properties of the Eigenvalues For M-K-systems the characteristic
equation (10) simplifies to

det(\V2M + K) = 0. (27)

This is a polynomial of degree n in A%. The roots A\? (i =1,..., n) not
necessarily are single. If they are, then for each A? there is exactly one
nontrivial possibly complex eigenvector r;, satisfying

(MM + K)r; =0. (28)
Multiplying (28) from the left with the vector 7} leads to
MrMr +r Kr; =0. (29)

In doing this we have in a way ‘projected’ the eigenvalue problem (28) on
r’, which of course leads to a loss of information. It would not be correct to
assume that all the solutions of (29) also fulfill (28). The inverse is however
true.

Since M and K were assumed symmetric, the expressions v Mr; and
rfKr; are real for arbitrary vectors 7;. For a positive definite matrix one
has 77 Mr; >0 and (29) can be transformed into

3 riKr;
¢ L Sl ) ‘
! riMr; (30)
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If also K is positive definite, we can conclude that A\? is a negative real
number. Since we obtained this result from the ‘projected’ equation (29),
at this point we only can be sure that one of the two solutions of (30) will
also fulfill (28). We do however know that the eigenvalues appear in complex
conjugate pairs

X=X, i=1...,n. (31)

so that in fact both solutions of (30) fulfill (28). The 2n eigenvalus

[T KT )
Xignoy = £ :"‘M:- : = Lynrosis T (32)

of any M-K-system (26) are therefore purely imaginary (if K is positive
definite). This according to (28) implies that the eigenvectors can be chosen
real, where r; is the eigenvector associated to A; and Af. If the stiffness
matrix is not positive definite but only positive semidefinite (r]Kr;>0),
then there are pairs of zero eigenvaluse \; =\, +; =0; with positive definite
stiffness matrix (r]Kr; >0) all the eigenvalues are complex conjugate in
strict sense.

Orthogonality Relations of Eigenvectors If (\;.7;) and (\g, 7)) are
two eigenpairs, i.e. pairs of eigenvalues with the corresponding eigenvectors,
then (29) impies
NMr; + Kr; =0, (33a)
AfM'rk + Kr, =0. (33b)

Multiplying (33a), respectively (33b) from the left with =], respectively
with T, leads to

MrlMr, + v Kr, =0, (34a)
AT Mry, + 7] Kry, = 0. (34b)

Due to the symmetry of M and K we have ’I‘IM T; :r,TM 7 and TIK r,=
r]K7)., so that the the difference of (34a) and (34b) gives

(A2 = X)) r] Mr, =0. (35)
This finally leads to

riTMr;.. =1 for ¢ #£ Xe. (36a)
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The eigenvectors associated to different eigenvalues (A? #\3) are orthogonal
with respect to the mass matrix. Similary one also has

rIKr, =0 for A} # M, (36h)

i.e. the eigenvectors are also orthogonal with respect to the stiffness matrix.
In general the eigenvectors will however not be orthogonal in the usual sense,
i.e. with respect to the identity matrix!

For multiple eigenvalues, i.e. for A2 =7, (35) does not imply the orthog-
onality of the corresponding eigenvectors. However, if the matrices M and
K are symmetric, as we always assume according to our definition (5), it
can be shown that to each pair of eigenvalues of multiplicity m, exactly m
linearly independent eigenvectors exist, which are all orthogonal to the re-
maining n—m eigenvectors. Each linear combination of these eigenvectors is
again an eigenvector A?. Using for example the GRAM-SCHMIDT orthogonal-
isation procedure, one can now construct an orthogonal basis (orthogonal
with respect to M) forming a basis of the subspace of R" spanned by the
m cigenvectors. Doing that for all eigenvectors pertaining to multiple eigen-
values, again results in n eigenvectors mutually orthogonal with respect to
M and K.

The orthogonality of the eigenvectors has the consequence that ry, 75, ...
.7, is a basis of R™. In fact, consider

e\ry+esrs+ ... +e,r, =0, (37)

i.e. a linear combination of the eigenvectors giving the zero vector, than.
multiplication with ] M from the left leads to

eir] Mr; =0, (38)

e; =10, F=il,. ol (39)
and this is the condition for linear independence. Since the eigenvectors

form a basis of R", any vector a of R™ has a unique representation in form
of

a=ar; +ary + ...+ a,r,. (40)

Multiplying from the left with #] M and using orthogonality of the eigen-
vectors leads to

r! Ma = a;r] Mr,, (41)
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so that the coefficients a; are obviously given by

r' Ma r Ka
v L o N S T 12
. rTMr; r]Kr ! BhSETe (42)

Modal Coordinates The eigenvectors can be assembled column wise in
the so called modal matriz

R=[r m - 7] (43)
of dimension nxn. With the coordinate transformation
q=Rp (44)
the equations of motion of a M-K-system (26) can be written in the form
MRp+KRp=0 (45)
in the modal coordinates p. Multiplication with RT from the left gives
R'MRp+R'KRp=0. (46)

Due to the orthogonality of the eigenvectors with respect to M and K the
matrices

My 0 ii'l ) 0
~ ﬁlr;g _ ]ng
M =R'MR = .K=R'KR=
0 ity 0 ko
are diagonal. The diagonal elements
mi = rlTM i, (47a)
ki =7 K, (47b)

are called modal mass and modal stiffness. Both quantities of course depend
on the normalization of the eigenvectors and moreover depend on an arbi-
trary common factor (since (46) can be multiplied by an arbitrary factors).
The quotient

w; = LI ﬂ—h]/\ =1 18
=\ = r;rM'r',_ naA;, i=1...,m (48)

]

>~



