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Preface

This book deals with both holonomic and non-holonomic constraints to study the
mechanics of the constrained rigid body. The approach is completely matrix and
we study all types of the general constraints that may appear at a rigid solid. The dis-
cussion is performed in the most general case, not in particular cases defined by certain
types of mechanisms. Our approach is a multibody type one and the obtaining of the
matrix of constraints is highlighted in each case discussed in the book. In addition,
algorithms for the numerical calculations are given for each type of constraint. The
theory is applied to numerical examples which are completely solved, the diagrams
resulted being also presented.

The book contains eight chapters as follows. The first chapter is an introduction
presenting the elements of mathematical calculation that will be used in the book.
The second chapter treats the kinematics of the rigid solid and in this chapter we obtain
the distribution of velocities and accelerations for a rigid body. The next chapter is
dedicated to the general theorem in the dynamics of the rigid solid, that is, the theorem
of momentum, the theorem of the moment of momentum, and the kinetic energy; all
these theorems are developed in matrix form. In the fourth chapter are presented the
matrix differential equations of motion in the general case of the rigid solid with con-
straints; the equations of motion are obtained using the general theorems and using the
Lagrange equations; a completely new proof is given for the equivalence of these two
approaches. In the fifth chapter we discuss the equilibrium of the rigid solid; we intro-
duce the generalized forces and their expressions; as a particular case we study the
equilibrium of a rigid solid hanged by springs. The next chapter deals with the motion
of the rigid solid having constraints at given proper points; we discuss the rigid body
with one fixed point, the rigid body in rotational motion, the rigid body with one or
several points situated on given surfaces or curves. In the seventh chapter we discuss
the motion of the rigid solid with constraints on given proper curves; the chapter is



xii Preface

dedicated to the study of the rigid body at which given curves support on given curves
or surfaces. The last chapter is dedicated to the motion of the rigid solid with con-
straints on the bounded surfaces; in this case the rigid body is supported at fixed points,
or it rolls on curves or surfaces.

The authors are grateful to Mrs. Eng. Ariadna—Carmen Stan for her valuable help in
the presentation of this book. The excellent cooperation with the team of John Wiley &
Sons is gratefully acknowledged.

This book is addressed to a large audience, to all those interested in using models and
methods with holonomic and non-holonomic constraints in various fields like:
mechanics, physics, civil and mechanical engineering, people involved in teaching,
research or design, as well as students.

The book can be also used either as a stand-alone course for the master or PhD
students, or as supplemental reading for the courses of computational mechanics,
analytical mechanics, multibody mechanics etc. The prerequisites are the courses of
elementary algebra and analysis, and mechanics.

Nicolae Pandrea and Nicolae-Doru Stianescu
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1

Elements of Mathematical
Calculation

This chapter is an introduction presenting the elements of mathematical calculation
that will be used in the book.

1.1 Vectors: Vector Operations

A vector (denoted by a) is defined by its numerical magnitude or modulus |a|, by the
direction A, and by sense. The vector is represented (Fig. 1.1) by an orientated segment
of straight line.

The sum of two vectors a, b is the vector ¢ (Fig. 1.2) represented by the diagonal of
the parallelogram constructed on the two vectors; it reads

c=a+bh. (1.1)

The unit vector u of the vector a (or of the direction A) is defined by the relation
a

u=—. (1.2)
|al

If one denotes by i, j, k the unit vectors of the axes of dextrorsum orthogonal ref-
erence system Oxyz, and by a,, a,, a. the projections of vector a onto the axes, then one
may write the analytical expression

a=aidi+a,j+ak. (1.3)

Dynamics of the Rigid Solid with General Constraints by a Multibody Approach, First Edition.
Nicolae Pandrea and Nicolae-Doru Stinescu.
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2 Dynamics of the Rigid Solid

Figure 1.1 Representation of a vector.

Yo

Figure 1.2 The sum of two vectors.

The scalar (dot) product of two vectors is defined by the expression
a-b=|a||b|cosa, (1.4)

where a is the angle between the two vectors.
We obtain the equalities

i-j=j-k=k-i=0, P=j=K*=1 (1.5)

and, consequently, one deduces the analytical expressions

a-b=a,b;+a,b,+a.b., (1.6)
|a|=y/ai +a} +aZ, |b|= /b2 +b2+b2, (L.7)
cosa= a:b: +ayby +asb, . (1.8)
@B +ad+al [b2+ b +b2
The vector (cross) product of two vectors, denoted by ¢,
c=axb, (1.9)

is the vector perpendicular onto the plan of the vectors a and b, while the sense is given
by the rule of the right screw when the vector a rotates over the vector b (making the
smallest angle); the modulus has the expression

|c| = |a][b|sina, (1.10)
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a being the smallest angle between the vectors a and b.
One obtains the equalities

ixj=k, jxk=i, kxi=}, (1.11)
and the analytical expression
axb=(ayb.—ab,)i+ (a:b—ab.)j+ (a;by—ayb;)k. (1.12)

The mixed product of three vectors, defined by the relation a- (b x ¢) and denoted by
(a, b, ¢), leads to the successive equalities

ax ay a
(a,b,c)=a-(bxc)=b-(cxa)=c-(axb)=|b, by b.|. (1.13)

Cy €y T

The mixed product (a, b, ¢) is equal to the volume with sign of the parallelepiped
constructed having the three vectors as edges (Fig. 1.3). It is equal to zero if and only
if the three vectors are coplanar.

The double vector product ax (b x ¢) satisfies the equality

ax(bxe)=(a-c)b—(a-b)c. (1.14)

The reciprocal vectors of the (non-coplanar) vectors a, b, ¢ are defined by the
expressions

bxec cxa axb
*=—, il . * = : 11
V=g ket b \L13)
and satisfy the equality
* * %k 1
(a",b*,c") = . (1.16)

(a,b,c)

Figure 1.3 The geometric interpretation of the mixed product of three vectors.



4 Dynamics of the Rigid Solid

An arbitrary vector v may be written in the form

v=(v-a“)a+(v-b )b+ (v-c')e, (1.17)
or as

v=(v-a)a“+(v-b)b" +(v-c)c". (1.18)

1.2 Real Rectangular Matrix

By real rectangular matrix we understand a table with m rows and n columns (m # n)

ayny ayp ... dy
az; axp ... day

[A]= : (1.19)
Am) m2 ... Ay

where the elements a;; are real numbers.
Sometimes, we use the abridged notation

[A] = (ay) or [A]=(ay) st (1.20)

The multiplication between a matrix and a scalar A € R is defined by the relation
AA] = (a;), (1.21)

while the sum of two matrices of the same rype (with the same number of rows and the
same number of columns) is defined by

[A] + [B] = (a;; +b;). (1.22)

The zero matrix or the null matrix is the matrix denoted by [0], which has all its
elements equal to zero.

The zero matrix verifies the relations

[A]+[0]=[0]+[A]=[A]. (1.23)
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The transpose matrix [A]T is the matrix obtained transforming the rows of the matrix
[A] into columns, that is

A]" = (az). (1.24)
The transposing operation has the following properties
T
[[A]"] = [AL[[A] + B = [A]" + [B]", (1.25)

where we assumed that the sum can be performed.

The matrix with one column bears the name column matrix or column vector and it is
denoted by {A}, that is

{AY=[an az ... am]", (1.26)

while the matrix with one row is called row matrix or row vector and is denoted as

Al=[an an ... aul, (1.27)
or
[A]={A}", (1.28)
where
{A}=[an an ... ai]". (1.29)

If the matrix [A] has m rows and n columns, and the matrix [B] has n rows and

p columns, then the two matrices can be multiplied and the result is a matrix [C] with
m rows and p columns

[C]=TA][B], (1.30)
where the elements c;;, 1 <i<m, 1 <j<p, of the matrix [C] satisfy the equality
Cijzzaikbkjv (1.31)
k=1

that is, the elements of the product matrix are obtained by multiplying the rows of
matrix [A] by the columns of matrix [B].
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The transpose of the product matrix is given by the relation
[[A][B]]" = [B]"[A]". (1.32)

In some cases, there may exist matrices of matrices and the multiplication is per-
formed as in the following example

[A1] [A)] By [B,] [A1][B1] + [A2][Bs] [A1][B] +[Az][By]
[As] [A4] [B]] [BZ]}= [A3][B1] + [A4][Bs] [As][Bo] +[A4][Ba] [, (1.33)
[As] [A] R [As][B1] + [Ag][B3] [As][Bz]+[Ag][Ba]

where we assumed that the operations of multiplication and addition of matrices can be
performed for each separate case.
1.3 Square Matrix

The matrix [A] is a square matrix if the number of rows is equal to the number of
columns; hence

ap diz ... dip
az) dxp ... day

[A]: N (1.34)
Ap) Ap2 ... dpy

where the number n is the dimension or the order of the matrix.

The determinant associated to the matrix [A] is denoted by det[A].

If [A;] is the matrix obtained from the matrix [A] by the suppression of the row i and
the column j, then the algebraic complement a;; is given by the expression

a;‘i:(_l)”fdet[A,j],lSi,jsn, (1.35)

and the following relation holds true

Eﬂ Ay, = En ayay = {0 for iy (1.36)
ikt = Gy = S <

LU L det[A] fori=j

The determinants of the matrices satisfy the equalities

det[A] =det[A]", (1.37)
det[[A][B]] = det[A] - det[B], (1.38)



