. : STl
Lt 9 @%‘ J[s]
L_ Ok

;QC@GAABU99965

Eighth Edition

PROGRAMMING

AV A
(LU TN VT A
mmm i il

iy

ISBN-13: 978-1-337-11756-2
ISBN-10: 1-337-11756-0

‘\ 90000

917813371117562

D.S. Malik

PROGRAMMING

Program Design Including
Data Structures

L4

~ o CENGAGE

Learning’

C++ Programming:

Program Design Including Data Structures

Eighth Edition
D.S. Malik

2% CENGAGE
1% learning

Australia * Brazil » Japan » Korea * Mexico ® Singapore * Spain * United Kingdom e United States

% CENGAGE
i~ learning

C++ Programming: Program Design Including
Data Structures, Eighth Edition

D.S. Malik

Senior Product Director: Kathleen McMahon
Product Team Leader: Kristin McNary
Associate Product Manager: Kate Mason

Associate Content Development Manager:
Alyssa Pratt

Production Director: Patty Stephan

Senior Content Project Manager: Jennifer
Feltri-George

Manufacturing Planner: Julio Esperas
Art Director/Cover Design: Diana Graham

Production Service/Composition:
SPi Global

Cover Photo: Cebas/Shutterstock.com

Printed in the United States of America
Print Number: 01 Print Year: 2017

© 2018, 2015, 2013 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any means,
except as permitted by U.S. copyright law, without the prior written
permission of the copyright owner.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.
Further permissions questions can be emailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2017931947

ISBN: 978-1-337-11756-2

Cengage Learning

20 Channel Center Street
Boston, MA 02210

USA

Unless otherwise noted all items © Cengage Learning.

Unless otherwise noted, all screenshots are ©Microsoft.

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

To learn more about Cengage Learning Solutions, visit
www.cengage.com.

Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com.

Any fictional data related to persons or companies or URLs used throughout
this book is intended for instructional purposes only. At the time this book
was printed, any such data was fictional and not belonging to any real
persons or companies.

The programs in this book are for instructional purposes only. They have
been tested with care, but are not guaranteed for any particular intent
beyond educational purposes. The author and the publisher do not offer any
warranties or representations, nor do they accept any liabilities with respect
to the programs.

TO
My Parents

© HunThomas/Shutterstock.com

WELCOME TO THE EIGHTH EDITION OF C++ Programming: Program Design
Including Data Structures. Designed for a first Computer Science (CS1and CS2) C++
course, this text provides a breath of fresh air to you and your students. The CS1 and
CS2 course serves as the cornerstone of the Computer Science curriculum. My pri-
mary goal is to motivate and excite all introductory programming students, regardless
of their level. Motivation breeds excitement for learning. Motivation and excitement
are critical factors that lead to the success of the programming student. This text is
a culmination and development of my classroom notes throughout more than fifty
semesters of teaching successful programming to Computer Science students.

Warning: This text can be expected to create a serious reduction in the demand
for programming help during your office hours. Other side effects include signifi-
cantly diminished student dependency on others while learning to program.

C++ Programming: Program Design Including Data Structures started as a collec-
tion of brief examples, exercises, and lengthy programming examples to supplement
the books that were in use at our university. It soon turned into a collection large
enough to develop into a text. The approach taken in this book is, in fact, driven by the
students’ demand for clarity and readability. The material was written and rewritten
until the students felt comfortable with it. Most of the examples in this book resulted
from student interaction in the classroom.

As with any profession, practice is essential. Cooking students practice their reci-
pes. Budding violinists practice their scales. New programmers must practice solving
problems and writing code. This is not a C++ cookbook. We do not simply list the
C+ + syntax followed by an example; we dissect the “why?” behind all the concepts.
The crucial question of “why?” is answered for every topic when first introduced. This
technique offers a bridge to learning C++ Students must understand the “why?” in
order to be motivated to learn.

xxxiv | C++ Programming: Program Design Including Data Structures, Eighth Edition

Traditionally, a C+ + programming neophyte needed a working knowledge of another
programming language. This book assumes no prior programming experience.
However, some adequate mathematics background, such as college algebra, is required.

Changes in the Eighth Editio

The eighth edition contains more than 300 new and updated exercises, requiring new
solutions, and more than 20 new programming exercises.

This edition also introduces C+ + 14 digit separator (Chapter 3), C++11 class inline
functions (Chapter 10), updated C++11 class data members initialization during
declaration (Chapter 10), and C+ +11 random generators (Chapter 13). The C-string
functions such as strcpy, stremp, and strcat have been deprecated, and might give
warning messages when used in a program. Furthermore, the functions strncpy and
strncmp might not be implemented in all versions of C++ Therefore, in Chapter 13,
we have modified the Programming Example newstring to reflect these changes by
‘including functions to copy a character array.

Approach
The programming language C+ +, which evolved from C, is no longer considered an
industry-only language. Numerous colleges and universities use C+ + for their first

programming language course. C++ is a combination of structured programming
and object-oriented programming, and this book addresses both types.

This book is intended for a two-semester course, CS1 and CS2, in Computer Science.
The first 10 or 11 chapters can be covered in the first course and the remaining in the
second course.

In July 1998, ANSI/ISO Standard C+ + was officially approved. This book focuses on
ANSI/ ISO Standard C+ +. Even though the syntax of Standard C+ + and ANSI/ISO
Standard C+ + is very similar, Chapter 7 discusses some of the features of ANSI/ISO
Standard C+ + that are not available in Standard C+ +.

Chapter 1 briefly reviews the history of computers and programming languages. The
reader can quickly skim through this chapter and become familiar with some of the
hardware components and the software parts of the computer. This chapter contains
a section on processing a C+ + program. This chapter also describes structured and
object-oriented programming.

Chapter 2 discusses the basic elements of C++ After completing this chapter, students
become familiar with the basics of C++ and are ready to write programs that are
complicated enough to do some computations. Input/output is fundamental to any
programming language. It is introduced early, in Chapter 3, and is covered in detail.

Preface | xxxv

Chapters 4 and 5 introduce control structures to alter the sequential flow of execu-
tion. Chapter 6 studies user-defined functions. It is recommended that readers with
no prior programming background spend extra time on Chapter 6. Several examples
are provided to help readers understand the concepts of parameter passing and the
scope of an identifier.

Chapter 7 discusses the user-defined simple data type (enumeration type), the
namespace mechanism of ANSI/ISO Standard C+ + and the string type. The earlier
versions of C did not include the enumeration type. Enumeration types have very lim-
ited use; their main purpose is to make the program readable. This book is organized
such that readers can skip the section on enumeration types during the first reading
without experiencing any discontinuity, and then later go through this section.

Chapter 8 discusses arrays in detail. This chapter also discusses range-based for
loops, a feature of C+ +11 Standard, and explains how to use them to process the ele-
ments of an array. Limitations of ranged-based for loops on arrays passed as param-
eters to functions are also discussed. Chapter 8 also discusses a sequential search
algorithm and a selection sort algorithm. Chapter 9 introduces records (structs).
The introduction of structs in this book is similar to C structs. This chapter is
optional; it is not a prerequisite for any of the remaining chapters.

Chapter 10 begins the study of object-oriented programming (OOP) and introduces
classes. The first half of this chapter shows how classes are defined and used in a
program. The second half of the chapter introduces abstract data types (ADTs). The
inline functions of a classes are introduced in this chapter. Also, the section “In-Class
Initialization of Data Members and the Default Constructor” has been updated.
Furthermore, this chapter shows how classes in C+ + are a natural way to implement
ADTs. Chapter 11 continues with the fundamentals of object-oriented design (OOD)
and OOP and discusses inheritance and composition. It explains how classes in C+ +
provide a natural mechanism for OOD and how C+ + supports OOP. Chapter 11 also
discusses how to find the objects in a given problem.

Chapter 12 studies pointers in detail. After introducing pointers and how to use them
in a program, this chapter highlights the peculiarities of classes with pointer data
members and how to avoid them. Moreover, this chapter discusses how to create and
work with dynamic two-dimensional arrays, and also explains why ranged-based for
loops cannot be used on dynamic arrays. Chapter 12 also discusses abstract classes
and a type of polymorphism accomplished via virtual functions.

Chapter 13 continues the study of OOD and OOP. In particular, it studies polymor-
phism in C++. The chapter specifically discusses two types of polymorphism—
overloading and templates. Moreover, C++11 random number generators are
introduced in this chapter.

xxxvi | C++ Programming: Program Design Including Data Structures, Eighth Edition

Chapter 14 discusses exception handling in detail. Chapter 15 introduces and dis-
cusses recursion. Moreover, this is a stand-alone chapter, so it can be studied anytime

after Chapter 9.

Chapters 16 and 17 are devoted to the study of data structures. Discussed in detail
are linked lists in Chapter 16 and stacks and queues in Chapter 17. The programming
code developed in these chapters is generic. These chapters effectively use the funda-

mentals of OOD.

Chapter 18 discusses various searching and sorting algorithms. In addition to show-
ing how these algorithms work, it also provides relevant analysis and results con-
cerning the performance of the algorithms. The algorithm analysis allows the user to
decide which algorithm to use in a particular application. This chapter also includes
several sorting algorithms. The instructor can decide which algorithms to cover.

Chapter 19 provides an introduction to binary trees. Various traversal algorithms, as
well as the basic properties of binary trees, are discussed and illustrated. Special binary
trees, called binary search trees, are introduced. Searching, as well as item insertion
and deletion from a binary search tree, are described and illustrated. Chapter 19 also
discusses nonrecursive binary tree traversal algorithms. Furthermore, to enhance the
flexibility of traversal algorithms, it shows how to construct and pass functions as
parameters to other functions. This chapter also discusses AVL (height balanced) trees
in detail. Because of text length considerations, discussion on AVL trees is provided as
a separate section and is available on the website accompanying this book.

Graph algorithms are discussed in Chapter 20. After introducing the basic graph
theory terminology, the representation of graphs in computer memory is discussed.
This chapter also discusses graph traversal algorithms, the shortest path algorithm,
and the minimal spanning tree algorithm. Topological sort is also discussed in this
chapter and is available on the website accompanying this book.

C++ is equipped with a powerful library—the Standard Template Library (STL)—
of data structures and algorithms that can be used effectively in a wide variety of
applications. Chapter 21 describes the STL in detail. After introducing the three basic
components of the STL, it shows how sequence containers are used in a program.
Special containers, such as stacks and queues, are also discussed. The latter half of this
chapter shows how various STL algorithms can be used in a program. This chapter is
fairly long; depending on the availability of time, the instructor can at least cover the
sequence containers, iterators, the classes stack and queue, and certain algorithms.

Appendix A lists the reserved words in C+ +. Appendix B shows the precedence and
associativity of the C+ + operators. Appendix C lists the ASCII (American Standard
Code for Information Interchange) and EBCDIC (Extended Binary Coded Decimal
Interchange Code) character sets. Appendix D lists the C++ operators that can be

overloaded.

Preface | xxxvii

Appendix E, provided online, has three objectives. First, we discuss how to convert
a number from decimal to binary and binary to decimal. We then discuss binary
and random access files in detail. Finally, we describe the naming conventions of the
header files in both ANSI/ISO Standard C++ and Standard C+ +. Appendix F dis-
cusses some of the most widely used library routines, and includes the names of the
standard C+ + header files. The programs in Appendix G show how to print the
memory size for the built-in data types on your system. Appendix H gives selected
references for further study. Appendix I provides the answers to odd-numbered exer-
cises in the book.

How to Use the Book

This book can be used in various ways. Figure 1 shows the dependency of the chapters.

In Figure 1, dotted lines mean that the preceding chapter is used in one of the sections
of the chapter and is not necessarily a prerequisite for the next chapter. For example,
Chapter 8 covers arrays in detail. In Chapters 9 and 10, we show the relationship
betweenarraysand st ructsandarraysand classes, respectively. However, if Chapter 10
is studied before Chapter 8, then the section dealing with arrays in Chapter 10 can
be skipped without any discontinuation. This particular section can be studied after
studying Chapter 8.

It is recommended that the first six chapters be covered sequentially. After covering
the first six chapters, if the reader is interested in learning OOD and OOP early, then
Chapter 10 can be studied right after Chapter 6. Chapter 7 can be studied anytime
after Chapter 6.

After studying the first six chapters in sequence, some of the approaches are:
1. Study chapters in the sequence: 8,9, 10, 11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21.
2. Study chapters in the sequence: 8, 10,12, 13, 11, 15, 16, 17, 14, 18, 19, 20, 21.
3. Study chapters in the sequence: 10, 8,12, 13, 11, 15, 16,17, 14, 18, 19, 20, 21.

As the chapter dependency diagram shows, Chapters 17 and 18 can be covered in
any sequence. However, typically, Chapters 17 and 18 are studied in sequence. Ideally,
one should study Chapters 16, 17, 18, and 19 in sequence. Chapters 20 and 21 can be
studied in any sequence.

xxxviii | C++ Programming: Program Design Including Data Structures, Eighth Edition

Chapter 1

Chapter 2

Chapter 4

A ¥
Chapter 11 Chapter 12 Chapter 14
Chapter 13
Chapter 15 I
fyis
Chapter 16
|
Chapter 17

m Chapter 20

'
iiog Cap e Ead o T SRS B o sl =

FIGURE 1 Chapter dependency diagram

z

"&‘
\ |

Features of the Book

Programming Example: Fibonacci Number | 293 FOUr'COIOr interior

design shows

£

2- (guess == num) /

cout << "Winner!. You guessed the correct number.” /,_/ 3 accurate C++
<< endl; o= ol
e e code and related
else if (guess < num) T comments.
cout << "Your guess is lower the number.\n" ==

<< "Guess again!"” endl;
else
cout << "Yi ss is higher than the number.\n"
<< _"Guess again!® << endl;
}//end while~"

You also need the following code to be included after the while loop in case the user 5
cannot guess the correct number in five tries:

if (lisGuessed)
cout << "You lose! The correct number is " << num << endl;

ne video is
Programming Exercise 15 at the end of this chapter asks you to write a complete One vi

C++ program to impl the Number G 'maeinwﬁchW/ available for

most, five tries to guess the number. each Chapter on

As you can see from the preceding while loop, the expression ind while st -
can be complex. The main objective of a whi 1e loop is-toTepeat certain statement(s) Ce ngage Brain
until certain conditions are met. ’/// .com. Each video

is designed to
explain how a
wpier of locise Bocall hat in G+ + sk s Ioops i ’ | program works.

used when certain stat ts must be until certain conditions
Froni are met. Following is a C++ program that uses a while loop to find a Fibonacci
the Video mumber.

Considex the following sequence of sumb
1, 1, 2, 3, 5. 8 13, 21, 34,

This sequence is called the Fibonacci sequence. Given the first two numbers of the
sequence (say, @, and a,), the nth number a,,, n >= 3, of this sequence is given by:
ey tay g

Thus:

G=ata=1+1=2,

a,=a; +a,=2+1=3,

and so on.

188 | Chapter 4: Control Structures | (Selection)

Chapter 2 defined a program as a sequence of statements whose objective is to accom-
plish some task. The programs you have examined so far were simple and straight-
forward. To process a program, the computer begins at the first executable statement
and executes the statements in order until it comes to the end. In this chapter and
Chapter 5, you will learn how to tell a computer that it does not have to follow a
simple sequential order of statements; it can also make decisions and repeat certain
statements over and over until certain conditions are met.

Control Structures

A computer can process a program in one of the following ways: in sequence; selec-
tively, by making a choice, which is also called a branch; repetitively, by executing
a statement over and over, using a structure called a loop; or by calling a function.
Figure 4-1 illustrates the first three types of program flow. (In Chapter 6, we will
show how function calls work.) The programming examples in Chapters 2 and 3
included simple sequential programs. With such a program, the computer starts at
the beginning and follows the statements in order to the end. No choices are made;
there is no repetition. Control structures provide alternatives to sequential pro-
gram execution and are used to alter the sequential flow of execution. The two most
common control structures are selection and repetition. In selection, the program
executes particular statements depending on some condition(s). In repetition, the
program repeats particular statements a certain number of times based on some
condition(s).

More than 300
visual diagrams,
both extensive
and exhaustive,
illustrate difficult
concepts.

Flow of execution

P x
__Variables; ASsignment Statements, and Input Statements | 55
Consider the following C+ + statements:
const double CONVERSION = 2.54;

const int NO_OF STUDENTS = 20;
const chax BLANK = ' ';

The first statement tells the compiler to allocate memory (eight bytes) to store a value
of type double, call this memory space CONVERSION, and store the value 2.54 in it.
Throughout a program that uses this statement, whenever the conversion formula is
needed, the memory space CONVERSION can be accessed. The meaning of the other
statements is similar.

Note that the identifier for a named constant is in uppercase letters. Even though there
are no written rules, C++ programmers typically prefer to use uppercase letters to
name a named constant. Moreover, if the name of a named constant is a combination
of more than one word, called a run-together word, then the words are typically sepa-
rated using an underscore. For example, in the preceding example, NO_OF_STUDENTS
is a run-together word. (Also see the section Program Style and Form, later in this
chapter, to properly structure a program.)

NOTE _ As noted earlier, the default type of floating-point numbers is doub1e. Therefore, if you

" declare a named constant of type £1oat, then you must specify that the value is of type
¥ £10at as follows:

const float CONVERSION = 2.54f;

Otherwise, the compiler will generate a warning message. Notice that 2 . 54 £ says that
itis a £1oat value. Recall that the memory size for £1oat values is four bytes; for
double values, eight bytes. Because memory size is of little concern these days, as

, we will mostly use the type double to work with floating-point values.

Using a named constant to store fixed data, rather than using the data value itself, has
one major advantage. If the fixed data changes, you do not need to edit the entire pro-
gram and change the old value to the new value wherever the old value is used. (For
example, in the program that computes the sales tax, the sales tax rate may change.)
Instead, you can make the change at just one place, recompile the program, and exe-
cute it using the new value throughout. In addition, by storing a value and referring to
that memory location whenever the value is needed, you avoid typing the same value
again and again and prevent accidental typos. If you misspell the name of the constant
value’s location, the computer will warn you through an error message, but it will not
warn you if the value is mistyped.

Numbered
Examples
illustrate the key
concepts with
their relevant
code. The
programming
code in these
examples is
followed by a
Sample Run.

An explanation
then follows that
describes what
each line in the
code does.

Notes highlight
important

facts about

the concepts
introduced in the
chapter.

