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Preface

A selected group of invited speakers and more than 150 students and researchers
attended a special conference on September 18-20, 2013, in “Said Halim Pasha
Palace™ in Istanbul. There had never been a conference of this kind in Turkey, where
“open” or “unsolved” problems are discussed, and even in the world there have only
been a few examples.

In principle, mathematicians, scientists, and engineers attend conferences to
speak about problems they have solved and to “impress” and inform the academic
community about their methods and the final solution. It is not generally expected
that a researcher would take the stand in a conference to talk about a problem she
or he could not (yet) solve. However, all scientific processes start with hypotheses
whose ramifications we do not know or problems whose solutions are not clear yet.
Either for personal reasons or in accordance with the expectations of scientific con-
ferences and their attendees, researchers tend to push the open/unsolved problems
to the back burner and talk about what they have solved, understood, or proved.
Still, once in a while (perhaps every 5-10 years), some researchers come together to
discuss problems they have not solved yet or problems whose solutions seem rather
challenging. Since the 1970s, there have been 7 such conferences.

Therefore, I am very happy that we were able to organize this Open Problems
in Mathematical and Computational Sciences Conference with support from the
Scientific and Technological Research Council (TUBITAK) of Turkey.

A large number of young researchers, MSc, and PhD candidates from Turkey,
as well as several from neighboring countries, attended the conference. The invited
scientists of the conference are among the most prolific mathematical and computa-
tional scientists in the world. They come from various countries, demonstrating that
science and engineering are culturally very diverse now. The list of countries and
number of scientists from each country were a good reminder of this fact: Belgium
(2), Brazil (1), Canada (2), China (2), France (3), Germany (2), Japan (1), Norway
(1), Romania (1), Turkey (3), and the USA (2).
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The Open Problems Conference was held in Said Halim Pasha Palace, one of
the most beautiful seaside palaces in Istanbul, whose history goes back at least 150
years and as far as Egypt!

Said Halim Pasha was the son of Mehmet Abdiilhalim Pasha who was one of
the four sons of Mehmet Ali Pasha from Kavala, the second largest city in Northern
Greece. Mehmet Ali Pasha (Muhammad Ali of Egypt) was an Ottoman commander
of Albanian origin and is regarded as the founder of modern Egypt because of the
dramatic reforms in the military, economic, and cultural spheres he instituted. Said
Halim Pasha was born in Cairo in the year 1863 and completed his education in
private lessons in Cairo, where he learned Arabic, Persian, English, and French.
He studied politics for 5 years in Switzerland. The palace had become the property
of Prince Abdiilhalim Pasha in the year 1876 and was reconstructed to its current
appearance by the travelling architect, Petraki Adamandidis of the Dardanelles. The
property was inherited by the nine children of the Abdiilhalim Pasha after his death
in 1890. After going through several owners, the Said Halim Pasha Palace was
restored following a fire in 1995 under the name “Prime Ministry Official Guest
House.”

Several peoples’ names need to be mentioned with gratitude, they made both the
Open Problems Conference and the Open Problems Book possible.

First of all, I sincerely thank Ronan Nugent for his valuable advice and the
Editorial Office of Springer for their help in getting the book published.

On behalf of the invited speakers, I am also sincerely grateful to TUBITAK
for agreeing with us about the vision of the Open Problems Conference and their
subsequent work that produced this book and for providing the financial support.
I would also like to thank to Siikran Kiilekci, Isa Sertkaya, Birnur Ocakli, Mehmet
Sabir Kiraz, and Osmanbey Uzunkol for working around the clock several days
before, during, and after the conference.

Santa Barbara, CA, USA Cetin Kaya Kog
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About Open Problems

Cetin Kaya Kog

Abstract A small group of computer scientists and mathematicians from industry
and academia convened in a historical home (“Said Halim Pasha Palace™) overlook-
ing the Bosphorus Straits to discuss several difficult problems they and others in
similar fields are tackling. The motivation of the Open Problems in Mathematical
and Computational Sciences Conference was to enable and encourage the academic
community, particularly young researchers and Ph.D. candidates, to hear about
unsolved, open problems in mathematical and computation sciences, directly from
the scientists who are rigorously investigating them.

1 The Conference

In general. scientists go to conferences to present discoveries that are already made,
to explain results or to expose and excite the community about connections within
various theories or structures, and to share their insights and proofs. Conferences
are places where we get to see and hear about solutions, ask questions about them,
and hope to understand them better in this process. Rarely is there an opportunity
to talk about problems that have not been solved yet or solutions which are not yet
satisfactory, except during the lunches, coffee breaks, or at other quiet times.

In many instances, scientists working on problems whose solutions are difficult to
obtain will state that asking the right question is the real challenge. It is imperative
to stop and think once in a while in order to understand the background of the
tools and the mechanisms needed for tackling the problems we are working on.
Conferences that deal with open problems are rare, but they are useful avenues for
such objectives. Almost all conferences are for presenting the solutions to certain
classes of problems whose origins we may not have any idea about.

C.K. Kog¢ (1)
University of California Santa Barbara, Santa Barbara, CA 93106, USA

Mathematical and Computational Sciences Labs, TUBITAK BILGEM, Gebze, Kocaeli, Turkey
e-mail: koc@cs.ucsb.edu

© Springer International Publishing Switzerland 2014 I
C.K. Kog (ed.), Open Problems in Mathematics and Computational Science,
DOI 10.1007/978-3-319-10683-0_1
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In a world replete with information, what matters most is sometimes not the
answers but rather the context, the origin and the body of questions for which
answers are sought or obtained.

This conference was planned with these ideas in mind. One purpose of the Open
Problems in Mathematical and Computational Sciences Conference is to encourage,
motivate, and excite the mathematical and computational sciences community to
discuss open problems. We would like to hear them formulate the questions and
present processes which will be helpful in the quest for answers.

Of course, we all know about certain open problems or conjectures in math-
ematics such as the Goldbach conjecture or the twin primes conjecture or the
Riemann hypothesis. Some well-known problems have been resolved during the
last 20 years, three excellent examples being Fermat’s last theorem by Andrew Weil
in 1995, the Poincaré conjecture by Grigori Perelman in 2003, and the prime gap
problem by Yitang Zhang (and later by the Polymath Project participants) in 2013.
The list of difficult problems in mathematics is pretty long, and solutions come in
decades or even centuries. And when they come, they are deservedly celebrated,
and the international media and thus the public pay attention; stories are made and
impressions are created. Furthermore, mathematics institutes around the world, for
example, the Clay Institute, publish problem lists and offer prizes which further
publicize the phenomena.

However, we are limiting our attention to computational problems in this
conference; there is also a long list of unsolved problems in computer science,
such as:

¢ P=NP problem

« Existence of one-way functions

* Is the graph isomorphism problem in P?

* s factoring in P?

= Is primality testing in P?

* What is the fastest algorithm for the multiplication of integers?
* What is the fastest algorithm for matrix multiplication?

The list is not complete, and our intention is not to complete the list, but to bring
the best minds to describe, elucidate, and explain some of these open problems
in the mathematical and computational sciences, particularly the problems they
themselves are interested in or working on or for which they have formulated
partial or near-complete solutions. We want them to tell us how they approach such
problems and what are the mechanisms and tools they are using and share with us
and excite us with the creative energy they are applying to such problems.

A perfect example from the above list was the question “Is Primality Testing
in P?7” This was affirmatively answered by Manindra Agrawal, Neeraj Kayal, and
Nitin Saxena of the Indian Institute of Technology Kanpur, by giving the first
deterministic polynomial time algorithm for primality testing. The implications of
this development are indeed great for cryptography, coding, and finite fields, where
primality plays a central role.
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To summarize, one of the underlying purposes of our 3-day conference was
to encourage young researchers, particularly Ph.D. candidates, to learn about
exciting, interesting, and important (yet) unsolved problems in mathematical and
computation sciences, directly from the researchers who are thinking about them.
I believe the informal atmosphere of the conference allowed them to listen to
the seminars, ask questions, interact, and discuss possible answers or pose new
questions to the invited speakers.

We believe such a close interactive environment served as a catalyzing event
and hopefully will synchronize local research communities with the best, most
challenging, and perhaps most useful problems the world’s best minds are working
on. Hopefully, in several years, perhaps even as early as the next Open Problems
Conference, a few of these challenging problems will find their partial or complete
solutions.

2 The Participants

The following people attended the conference as invited speakers:

* Paulo Barreto, Universidade de Sao Paulo

* Claude Carlet, Université Paris 8

* Guanrong Chen, City University of Hong Kong

» Omer Egecioglu, University of California, Santa Barbara

* Gerhard Frey, Gottingen Academy of Sciences

* Tor Helleseth, University of Bergen

* Antoine Joux, Université de Versailles Saint-Quentin-en-Y velines
= Andrew Klapper, University of Kentucky

* Alfred Menezes, University of Waterloo

* David Naccache, Université Paris 11

* Koji Nakano, Hiroshima University

* Ferruh Ozbudak, Middle East Technical University

* Daniel Panario, Carleton University

* Bart Preneel, KU Leuven

* Gheorghe Paun, Romanian Academy

* Jean-Jacques Quisquater, Université catholique de Louvain
* Henning Stichtenoth, Sabanci University

* Murat Tekalp, Ko¢ University

* Han Vinck, University of Duisburg-Essen

We thank our speakers for taking time to come to Istanbul to talk about
problems that excite them and to share them with us. There were more than 150
participants, most of whom were from Turkey, as expected; however, about 10 % of
the participants were from other European countries, including Bulgaria, Denmark,
France, and Romania.



4 C.K. Kog

3 The Book

As we were planning the conference, we also developed a plan to publish a book
arising from the presentations.

This book contains selected and revised papers from the conference. We gave
a window of about 6 months to the speakers to create the chapters in this book,
revising and expanding their work by adding an introduction section and an
annotated bibliography. The introduction section of each chapter is intended to
provide the background of the topic of the chapter, assuming the reader is a first-year
graduate student who has the general knowledge of electrical engineering, computer
science, programming, and computational mathematics via his/her undergraduate
education and has just started reading books and papers in the area of the
chapter. Therefore, the chapters attempt to give all basic definitions, introduce the
context, and summarize algorithms, theorems, and proofs. On the other hand, the
bibliography aims to introduce the most important references to follow up, giving a
short description of these papers and books, and their importance to the field. I hope
you will find these chapters to your liking.



The Past, Evolving Present, and Future
of the Discrete Logarithm

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot

Abstract The first practical public key cryptosystem ever published, the Diffie—
Hellman key exchange algorithm, relies for its security on the assumption that
discrete logarithms are hard to compute. This intractability hypothesis is also the
foundation for the security of a large variety of other public key systems and
protocols.

Since the introduction of the Diffie-Hellman key exchange more than three
decades ago, there have been substantial algorithmic advances in the computation
of discrete logarithms. However, in general the discrete logarithm problem is still
considered to be hard. In particular, this is the case for the multiplicative groups
of finite fields with medium to large characteristic and for the additive group of a
general elliptic curve.

This chapter presents a survey of the state of the art concerning discrete
logarithms and their computation.

1 Introduction

1.1 The Discrete Logarithm Problem

Many popular public key cryptosystems are based on discrete exponentiation. If
G is a multiplicative group, such as the group of invertible elements in a finite

A. Joux
CryptoExperts, Paris, France

Chaire de Cryptologie de la Fondation de I"UPMC, Paris, France

Sorbonne Universités, LIP6, UMR 7606. UPMC Univ Paris 06, Paris, France
e-mail: Antoine.Joux @m4x.org

A. Odlyzko
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
e-mail: odlyzko@umn.edu

C. Pierrot (1)
DGA/CNRS, Sorbonne Universités, LIP6, UMR 7606, UPMC Univ Paris 06, Paris. France
e-mail: Cecile.Pierrot@lip6.fr
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field or the group of points on an elliptic curve, and g is an element of G, then
¢" is the discrete exponentiation of base g to the power .x. This operation shares
basic properties with ordinary exponentiation, for example, g"ty = g% . g". The
inverse operation is, given / in G, to determine a value of x, if it exists, such that
h = g*. Such a number x is called a discrete logarithm of 4 to the base g, since it
shares many properties with the ordinary logarithm. If, in addition, we require some
normalization of x to limit the possible answers to single valid value, we can then
speak of the discrete logarithm of /. Indeed, without such a normalization, x is not
unique and is only determined modulo the order of the element g.

Assume for simplicity that G is a cyclic group generated by g and that the
notation log,(h) denotes a value such that i = g"%"™ Then, as with ordinary
logarithms, there is a link between multiplication of elements and addition of
logarithms. More precisely, we have:

log,(h - j) = log,(h) + log,(j) mod |G|.
We say that we solve the discrete logarithm problem (DLP) in G if given any
element g* in G, we are able to recover x. To normalize the result, we usually ask
for x to be taken in the range 0 < x < |G|. In many applications, in particular in
cryptography, it is sufficient to be able to solve this problem in a substantial fraction
of cases. (The usual theoretical standard is that this fraction should be at least the
inverse of a polynomial in the logarithm of the size of the group.)

The main interest of discrete logarithm for cryptography is that, in general, this
problem is considered to be hard. The aim of this chapter is to provide state-of-the-
art information about the DLP in groups that are used for cryptographic purposes. It
gives pointers to the latest results and presents observations about the current status
and likely future of the DLP.

1.2 Applications of Discrete Logarithms

In some sense, the discrete logarithm has a long history in number theory. It is
just an explicit way to state that an arbitrary cyclic group containing N elements is
isomorphic to (Zy, +). Still, before the invention of the Diffie-Hellman protocol,
the problem of efficiently computing discrete logarithms attracted little attention.
Perhaps the most common application was in the form of Zech’s logarithm, as a way
to precompute tables allowing faster execution of arithmetic in small finite fields.
The role of the DLP in cryptography predates Diffie-Hellman. Indeed, the
security of secret-key cryptosystem involving linear feedback shift registers (LFSR)
is closely related to the computation of discrete logarithms in finite fields of
characteristic two. More precisely, locating the position where a given subsequence



The Past, Evolving Present, and Future of the Discrete Logarithm 7

appears in the output of an LFSR is, in fact, a DLP in the finite field defined by the
feedback polynomial.’

The main impetus to intensive study of discrete logarithms came from the inven-
tion of the Diffie—Hellman method in 1976 [DH76]. Much later, the introduction of
pairing in cryptography in 2000 (journal versions [Jou04,BF03]) increased the level
of attention on some atypical finite fields, with composite extension degrees and/or
medium-sized characteristic.

1.2.1 Diffie-Hellman Key Exchange

Let us recall the first practical public key technique to be published, which is still
widely used, the Diffie-Hellman key exchange algorithm. The basic approach is as
follows. If Alice and Bob wish to create a common secret key, they first agree, on a
cyclic group G and a generator g of this group.” Then, Alice chooses a random
integer a, computes g“, and sends it to Bob over a public channel, while Bob
chooses a random integer b and sends g” to Alice. Now Alice and Bob can both
compute a common value, which then serves as their shared secret:

(gb)u = gu-h = (gu)h.

The security of this system depends on the assumption that an eavesdropper who
overhears the exchange, and thus knows g, g%, and g”, will not be able to compute
the shared secret. In particular, this hypothesis assumes that the eavesdropper is
unable to solve the DLP in G. Indeed, if the DLP for this group is solvable, he can
compute either @ or b and recover the shared secret g“”, However, it is not known
whether the problem of computing g given g, g, and g”, which is known as the
computational Diffie-Hellman problem (CDH), is equivalent to the computation
of discrete logarithms. Moreover, to prove the security of many cryptographic
protocols, it is often necessary to consider the associated decision problem: given
g. g%, g", and h, decide whether 4 is the correct value of g% or not. This latest
problem is called the decision Diffie—Hellman problem (DDH).

There are also many generalized computational and decision problems somehow
related to the DLP that have been introduced as possible foundations for various
cryptosystems. Since it is not easy to compare all these assumptions, in an attempt
to simplify the situation, Boneh et al. [BBGOS5] have proposed the uber-assumption
which subsumes all these variations and can be proven secure in the generic group
model (see Sect. 2.5).

However, the DLP itself remains fundamental. Indeed from a mathematical
viewpoint, it is a much more natural question than the other related problems, and

! Assuming that it is irreducible, which is usually the case.

>The group G and generator g can be the same for many users and can be part of a public standard.
However, that can lead to a reduction in security of the system.
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in practice, none of these other problems has ever been broken independently of the
DLP. Since the introduction of the Diffie—Hellman key exchange, this concern has
motivated a constant flow of research on the computation of discrete logarithms.

Another extremely important assumption in the above description is that the
eavesdropper is passive and only listens to the traffic between Alice and Bob. If
the attacker becomes active, then the security may be totally lost, for example,
if he can mount a man-in-the-middle attack where he impersonates Bob when
speaking to Alice and conversely. This allows him to listen to the decrypted traffic.
To avoid detection, the attacker forwards all messages to their intended recipient
after reencrypting with the key that this recipient has shared with him during the
initial phase. One essential issue when devising cryptosystems based on discrete
logarithms is to include safety measures preventing such active attacks.

1.2.2 Other Protocols

After the invention of the RSA cryptosystems, it was discovered by El
Gamal [Gam85] that the DLP can be used not only for the Diffie-Hellman key
exchange, but also for encryption and signature. Later Schnorr [Sch89] gave
an identification protocol based on a zero-knowledge proof of knowledge of a
discrete logarithm, which can be turned into Schnorr’s signature scheme using the
Fiat—Shamir transform [FS86].

There are many more cryptosystems based on the DLP which will not be covered
here. However, let us mention the Paillier encryption [Pai99]. This system works in
the group Z’;.:, where N = pg is an RSA number of unknown factorization. In
particular, this is an example of a discrete logarithm-based cryptosystem that works
within a group of unknown order. This system possesses an interesting property,
in that it is additively homomorphic; the product of the Paillier encryption of two
messages is an encryption of their sum.

Another very interesting feature of discrete logarithms is the ability to construct
key exchange protocols with additional properties, such as authenticated key
exchange, which embed the verification of the other party identity within the key
exchange protocol. Perfect forward secrecy, in which disclosure of long-term secrets
does not allow for decryption of earlier exchanges, is also easy to provide with
schemes based on discrete logarithms. For example, in the Diffie—Hellman key
exchange, Alice’s secret @ and Bob’s secret b are ephemeral, and so is the shared
secret they used to create, and (if proper key management is used) are discarded
after the interaction is completed. Thus, an intruder who manages to penetrate
either Alice’s or Bob'’s computer would still be unable to obtain those keys and
decrypt their earlier communications. It is also possible to mix long-term secrets,
Le., private keys, and ephemeral secrets in order to simultaneously provide perfect
forward secrecy and identity verification.
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1.2.3 A Powerful Extension: Pairing-Based Cryptography

Besides the Diffie—Hellman key exchange, a natural question to ask is whether
there exists a three-party one-round key agreement protocol that is secure against
cavesdroppers. This question remained open until 2000 when Joux [Jou04] devised a
simple protocol that settles this question using bilinear pairings. Until then, building
a common key between more than two users required two rounds of interaction.
A typical solution for an arbitrary number of users is the Burmester-Desmedt
protocol [BD94].

The one-round protocol based on pairing works as follows. If Alice, Bob, and
Charlie wish to create a common secret key, they first agree on G| = (P ) an additive
group with identity O, a multiplicative group G» of the same order with identity 1,
and a bilinear pairing from G| to G,. Let us recall the definition

Definition 1.1 A symmetric bilinear pairing® on (G, G,) is a map
@it G| X G| —> Gz

satisfying the following conditions:

l. eisbilinear: VR, S, T € G|, e(R+ 5. T)=¢e(R,T)-e(S.T),
and e(R,S+T)=e(R,S)-e(R,T).
2. e is non-degenerate: If VR € Gy. ¢(R,S) =1, then § = O.

Alice randomly selects a secret integer ¢ modulo the order of G| and broadcasts
the value aP to the other parties. Similarly and simultaneously, Bob and Charlie
select their one secret integer b and ¢ and broadcast bP and cP. Alice (and Bob and
Charlie, respectively) can now compute the shared secret key

K = e(bP.cP)" = e(P. P)"*

We know that the security of DH-based protocols often relies on the hardness of the
CDH and DDH problems. Likewise, the security of pairing-based protocols depends
on the problem of computing e( P, P)“" given P, aP, bP, and cP, which is known as
the computational bilinear Diffie—Hellman problem (CBDH or simply BDH). This
problem also exists in its decision form (DBDH). However, little is known about the
exact intractability of the BDH, and the problem is generally assumed (o be as hard
as the DLP in the easier of the groups G| and G,. Indeed, if the DLP in G, can be
efficiently solved, then an eavesdropper who wishes to compute K can recover a
[rom aP and then compute e(bP, cP)“. Similarly, if the DLP in G can be efficiently

In general, asymmetric pairings are also considered. For simplicity of presentation, we only
describe the symmetric case.
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solved, he could recover bc from e(bP, cP) = e(P, P)*, then compute bcP, and
finally obtain K as e(aP. bcP).

One consequence of the bilinearity property is that the DLP in G; can be
efficiently reduced to the DLP in G,. More precisely, assume that Q is an element
of Gy such that Q = xP, then we see that ¢(P. Q) = e(P.xP) = e(P.P)".
Thus, computing the logarithm of ¢( P, Q) in G (to the base e( P, P)) yields x. This
reduction was first described by Menezes et al. [MOV93] to show that supersingular
elliptic curves are much weaker than random elliptic curves, since the DLP can be
transferred from a supersingular curve to a relatively small finite field using pairings.

After the publication of the Menezes, Okamoto, and Vanstone result, cryp-
tographers started investigating further applications of pairings. The next two
important applications were the identity-based encryption scheme of Boneh and
Franklin [BF03] and the short signature scheme of Boneh et al. [BLS04]. Since then,
there has been a tremendous activity in the design, implementation, and analysis of
cryptographic protocols using bilinear pairings on elliptic curves and also on more
general abelian varieties, for example, on hyperelliptic curves.

1.3 Advantages of Discrete Logarithms

A large fraction of the protocols that public key cryptography provides, such
as digital signatures and key exchange, can be accomplished with RSA and its
variants. Pairing-based cryptosystems are a notable exception to this general rule.
However, even for classical protocols, using discrete logarithms instead of RSA as
the underlying primitive offers some notable benefits.

1.3.1 Technical Advantages

Smaller Key Sizes The main advantage of discrete logarithms comes from the
fact that the complexity of solving the elliptic curve discrete logarithm problem
(ECDLP) on a general elliptic curve is, as far as we know, much higher than
factoring an integer of comparable size. As a direct consequence, elliptic curve
cryptosystems currently offer the option of using much smaller key sizes than would
be required by RSA or discrete logarithms on finite fields to obtain a comparable
security level.

In truth, the key size reduction is so important that it more than offsets the
additional complexity level of elliptic curve arithmetic. Thus, for the same overall
security level, elliptic curve systems currently outperform more classical systems.

Perfect Forward Secrecy When using RSA to set up a key exchange, the usual
approach is for one side to generate a random secret key and send it to the other
encrypted with his RSA public key. This grants, to an adversary that records all the



