Linda Beeley

Safer Prescribing

A Guide to some problems in the use of drugs Second edition

Blackwell Scientific Publications

Safer Prescribing a guide to some problems in the use of drugs

Linda Beeley
BM, BCh, MRCP
Department of Therapeutics and
Clinical Pharmacology
University of Birmingham

SECOND EDITION

Blackwell Scientific Publications Oxford London Edinburgh Melbourne © 1976, 1979 Blackwell Scientific Publications Osney Mead, Oxford, 8 John Street, London, WC1 9 Forrest Road, Edinburgh, P.O. Box 9, North Balwyn, Victoria, Australia.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the copyright owner.

First published 1976 Reprinted 1977, 1978 Second edition 1979

Typeset by Enset Ltd.
Midsomer Norton, Bath
Printed and bound in
Great Britain by
The Blackmore Press,
Longmead, Shaftesbury, Dorset

British Library Cataloguing in Publication Data Beeley, Linda

Safer prescribing. – 2nd ed.

1. Drug interactions 2. Drugs - Side effects

I. Title

615'.704

RM302

ISBN 0-632-00404-5

Safer Prescribing

Contents

Preface	vi
Drug interactions	1
The effect of food on drug absorption	20
Drug prescribing in renal failure	21
Drug prescribing in liver disease	29
Drugs in pregnancy	35
Drugs and lactation	40
Index	43

Drug interactions are of two kinds:

1 Pharmacodynamic interactions occur between drugs which compete for the same receptor site or act on the same physiological system. They can also occur indirectly when a drug-induced disease or change in fluid or electrolyte balance alters the response to another drug.

2 Pharmacokinetic interactions occur when one drug alters the absorption, distribution or elimination of another drug such that the amount which reaches the site of action is increased or decreased.

It is generally true that pharmacodynamic interactions demonstrated with one drug should be anticipated with related drugs. Pharmacokinetic interactions, on the other hand, cannot be extrapolated to combinations of pharmacologically related drugs unless the pharmacokinetics are known to be similar.

From the therapeutic point of view the result of a drug interaction can be harmful, unimportant or useful. The following tables list those interactions which have been shown to be or are potentially harmful in man during normal clinical use of the drugs concerned. They are not intended to be comprehensive lists of all possible interactions and therapeutically useful interactions are not included.

In most of the tables the drug whose action is affected is listed in column 1 and drugs are arranged by body system or pharmacological group, as seemed most appropriate. Column 2 lists the drugs which interact with the primary drug, and column 3 states the mechanism and result of the interaction.

Because only the drug affected appears in column 1, when using the tables to check whether any interaction is likely to occur between drugs prescribed for a patient each drug must be looked for in column 1 and the presence of the others sought in column 2.

The table of drug interactions with alcohol differs from the others as it contains all drug-alcohol interactions regardless of whether it is the effect of the drug or the effect of alcohol which alters.

CARDIOVASCULAR SYSTEM

DRUGS AFFECTED DRUGS WHICH

RESULT OF INTERACTION

Cardiac glycosides, digoxin, digitoxin, medigoxin, etc. Diuretics:
thiazides
frusemide
bumetanide
ethacrynic acid

Toxicity increased by hypokalaemia.

Carbenoxolone Amphotericin B

Cholestyramine

Reduced absorption of digitoxin.

DRUGS

AFFECTED

DRUGS WHICH

INTERACT

RESULT OF INTERACTION

Antacids

Have been shown to reduce the absorption of digoxin. Clinical importance not known.

Phenobarbitone

Phenytoin

Phenylbutazone

Reduced effect of digitoxin due to increased metabolism.

Lignocaine

Phenytoin Quinidine Sino-atrial arrest.

Mexiletine

Narcotic analgesics

Delayed absorption.
Can be overcome by giving a larger (oral) loading dose of

mexiletine.

Verapamil

Beta-blockers

Increased risk of

asystole.

Beta-blockers

Prenylamine

Increased negative inotropic effect. Prenylamine produces catecholamine depletion in

the myocardium.

Ergotamine

Increased peripheral vasoconstriction.

Raynaud's Phenomenon

may occur.

Nitrates

Antihypertensive

drugs Alcohol Increased postural

hypotension.

Antihypertensive drugs

All

Anti-inflammatory analgesics e.g. phenylbutazone, indomethacin

Carbenoxolone Corticosteroids,

ACTH Oral contraceptives Hypotensive effect antagonised by drugs causing fluid retention or hypertension.

DRUGS WHICH INTERACT RESULT OF

Alcohol Sedatives and hypnotics Potentiation. These drugs all produce hypotension as a side effect.

Antagonism. Neuronal

uptake to site of action

is prevented.

Tranquillisers
Antidepressants (but see below)

L-dopa Fenfluramine Nitrates

Guanethidine Bethanidine Debrisoquine Tricyclic antidepressants Indirect sympathomimetic amines e.g. amphetamin

e.g. amphetamines
phenylpropanolamine
(present in proprietary common
cold remedies)

Chlorpromazine (large doses)

May occasionally antagonise hypotensive effect.

Clonidine

Tricyclic antidepressants

Beta-blockers

Antagonism. Probably a central effect.

May potentiate withdrawal hypertension. When changing from clonidine to a betablocker several days should be left between stopping clonidine and starting the betablocker.

Vasoconstrictors

Noradrenaline Adrenaline

Tricyclic antidepressants Potentiation due to inhibition of neuronal uptake. Hypertension, tachycardia, arrhythmias may occur.

DRUGS AFFECTED

DRUGS WHICH INTERACT

RESULT OF INTERACTION

Guanethidine Reserpine

Potentiation due to increased receptor sensitivity ("denervation supersensitivity").

Metaraminol Phenylephrine Guanethidine Reserpine Debrisoquine

Potentiation of direct vasoconstrictor effect. Hypertension may occur. N.B. Phenylephrine is present in many proprietary common cold remedies.

Diuretics

Thiazides
Frusemide
Bumetanide
Ethacrynic acid

Corticosteroids, ACTH Carbenoxolone Increased urinary potassium loss

Anti-inflammatory analgesics, e.g. phenylbutazone indomethacin Carbenoxolone Oestrogens Corticosteroids, ACTH Diuretic effect antagonised by fluid retention.

Thiazides

Cholestyramine

Reduced absorption. Avoided by giving them at least 2 hours apart.

Spironolactone

Aspirin

Inhibition of natriuretic effect—mechanism unknown.

ORAL ANTICOAGULANTS

Coumarins

Warfarin Ethylbiscoumacetate Nicoumalone Cholestyramine

Cholestyramine interferes with the absorption of warfarin and of vitamin K. Either inhibition or potentiation is possible.

DRUGS WHICH

RESULT OF INTERACTION

Barbiturates
Primidone
Dichloralphenazone
Glutethimide
Methaqualone
Phenytoin
Carbamazepine
Rifampicin
Griseofulvin

Reduced anticoagulant effect due to increased metabolism. Overdose and bleeding may occur when interacting drug is stopped.

Chloramphenicol
Metronidazole
Alcohol (acute
intoxication)
? Allopurinol

Increased effect due to inhibition of coumarin metabolism.

Distalgesic

Recent reports suggest that potentiation may occasionally occur. Dextropropoxyphene inhibits the metabolism of warfarin.

Co-trimoxazole and possible other sulphonamides Increased effect.
Probably due partly to inhibition of metabolism and partly to displacement from protein binding.

Azapropazone

Potentiation has been reported.

Phenylbutazone, oxyphenbutazone

Increased effect due to inhibition of metabolism and displacement from protein binding. Serious risk of haemorrhage.

Mefenamic acid Chloral hydrate, triclofos Nalidixic acid Displacement from protein-binding occurs but the increased effect is transient and will usually be unimportant.

DRUGS WHICH INTERACT RESULT OF INTERACTION

Clofibrate

Increased effect. Mechanism not established but evidence suggests an interaction at the receptor site.

Anabolic steroids
e.g. oxymetholone,
norethandrolone,
ethyloestranol,
stanozolol

Increased effect—
possibly due to
decreased receptor
affinity for vitamin K.

Neomycin

Increased effect due to impaired absorption of vitamin K—probably secondary to steatorrhoea.

Oral broad spectrum antibiotics They are said to potentiate anticoagulants by reducing bacterial synthesis of vitamin K, but significant vitamin K deficiency is very unlikely to occur unless dietary vitamin K is also reduced and treatment is continued for many weeks.

Aspirin Dipyridamole

Increased risk of bleeding due to antiplatelet effect. A single dose of aspirin can prolong the bleeding time for up to 5 days, and large doses also have a hypoprothrombinaemic effect.

Oral contraceptives

Reduced effect due to increased synthesis of vitamin K-dependent clotting factors.

Vitamin K

Reversal of anticoagulant effect due to competitive inhibition.

DRUGS WHICH

RESULT OF INTERACTION

N.B. Some proprietary chilblain preparations contain sufficient vitamin K to inhibit oral anticoagulants (e.g. Pernivit, Amisyn.

Indanediones—Phenindione

The indanedione anticoagulants do not appear to share all the interactions of coumarins. They can be expected to interact in the same way as the coumarins with the following drugs:

Clofibrate

Anabolic steroids

Neomycin Aspirin

Dipyridamole

Oral contraceptives
Preparations containing vitamin K

ANALGESICS AND DRUGS USED IN ARTHRITIS AND GOUT

Aspirin

Alcohol

Increased risk of gastro-

intestinal bleeding.

Metoclopramide

Increased rate of absorp-

tion. Higher blood

levels.

Paracetamol

Metoclopramide

Increased rate of absorp-

tion. Higher blood

levels.

Cholestyramine

Reduced absorption.

"Enzyme inducers" e.g. barbiturates chronic alcoholism Increased risk of hepatotoxicity after paraceta-

mol overdose.

Indomethacin

Probenecid

Reduced excretion and higher blood levels of indomethacin. May

increase therapeutic and

side effects.

DRUGS AFFECTED DRUGS WHICH INTERACT

RESULT OF INTERACTION

Phenylbutazone

Cholestyramine

Reduced absorption of

phenylbutazone

Penicillamine

Oral iron

Reduced absorption of penicillamine. Give at least 3 hours apart.

Probenecid Sulphinpyrazone

Aspirin

Inhibition of uricosuric effect. In a dose of less than 2 g daily aspirin also causes uric acid

retention.

CENTRAL NERVOUS SYSTEM

Hypnotics and sedatives

Barbiturates
Other hypnotics
Benzodiazepines
e.g. nitrazepam
flurazepam
diazepam
chlordiazepoxide

Alcohol Narcotic analgesics Antihistamines Tranquillisers Antidepressants Increased CNS depression.

Major Tranquillisers

Phenothiazines Haloperidol

Metoclopramide

Risk of increased extrapyramidal side effects.

Chlorpromazine

Aluminium hydroxide Magnesium trisilicate Absorption of chlorpromazine is significantly reduced. Clinical importance unknown.

Antidepressants

Tricyclic antidepressants e.g. imipramine amitriptyline

Barbiturates

Increased metabolism and reduced blood levels. Clinical importance unknown.

Alcohol

Potentiation of sedative effect, especially during

first few days of treatment.

DRUGS WHICH INTERACT

RESULT OF INTERACTION

of cerebral

haemorrhage.

Hypertensive crisis – severe headache - risk

Monoamine oxidase inhibitors e.g. tranylcypromine phenelzine

N.B. interactions can occur up to 2 weeks after stopping MAOI

Food containing tyramine or dopamine e.g. cheese, bovril

Indirect sympa-

thomimetic amines: amphetamine ephedrine phenylpropanolamine phenylephrine

L-dopa

Tricyclic antidepressants

metaraminol

Pethidine narcotics

Reserpine

tension, and convulsions.

CNS excitation, hyper-

CNS excitation, hyper-(and possibly other tension or hypotension, coma.

> CNS excitation and hypertension.

Lithium carbonate

Acetazolamide Aminophylline

Increased excretion of lithium. Clinical importance unknown.

Large doses increase lithium excretion and reduce blood levels. Sodium depletion increases lithium

toxicity.

Diuretics

Increased risk of toxicity due to sodium depletion. Lithium excretion is reduced in patients on long-term

thiazides.

Sodium bicarbonate

Sodium chloride

DRUGS AFFECTED	DRUGS WHICH INTERACT	RESULT OF INTERACTION
Anticonvulsants		
All	Phenothiazines Tricyclic anti- depressants	Antagonism—these drugs lower the convulsive threshold.
	Methotrexate Co-trimoxazole Pyrimethamine Oral contraceptives	Potentiation of folate deficiency is a theoretical possibility.
Phenytoin	Isoniazid Sulthiame Dicoumarol Chloramphenicol Pheneturide Sulphaphenazole Disulfiram	Potentiation and increased toxicity due to inhibition of phenytoin metabolism.
	Diazepam	Increased blood levels and phenytoin toxicity have been reported.
	Phenobarbitone Carbamazepine Chronic alcoholism	Increased phenytoin metabolism. Clinical importance probably small.
	Phenylbutazone Tolbutamide Aspirin Sodium valproate	Displace phenytoin from protein binding. Potentiation will usually be transient but toxicity has been reported.

Phenobarbitone Primidone Phenytoin Pheneturide Sodium valproate Inhibition of phenobarbitone metabolism. Increased blood levels of phenobarbitone and increased sedation.

Carbamazepine

Phenobarbitone Phenytoin Increased metabolism and lower blood levels of carbamazepine. Clinical importance probably small.

DRUGS WHICH INTERACT RESULT OF INTERACTION

Drugs used in Parkinsonism

Anticholinergic drugs e.g. benzhexol orphenadrine benztropine Tricyclic antidepressants Phenothiazines Monoamine oxidase inhibitors Antihistamines

Increased anticholinergic side effects—dry mouth, blurred vision, urinary retention, constipation.

Tricyclic antidepressants Monoamine oxidase inhibitors Amantadine Excitement, confusion and hallucinations— additive central anticholinergic effects.

L-dopa

Phenothiazines Reserpine Haloperidol Methyldopa Antagonism. These drugs have extrapyramidal side effects.

Benzodiazepines

Deterioration has been reported in patients on l-dopa who were given diazepam or chlor-diazepoxide.

Metoclopramide

Increased absorption and higher blood levels of l-dopa. Metoclopramide can produce extrapyramidal effects but does not seem to antagonise the effect of l-dopa.

Anticholinergic drugs e.g. propantheline benzhexol benztropine Reduced absorption and lower blood levels of l-dopa.
Clinical importance unknown.

Pyridoxine (present in many proprietary multi-vitamin preparations and in Optimax) Antagonism. Probably due to increased peripheral metabolism of I-dopa. (Pyridoxine has no effect if a dopa decarboxylase inhibitor e.g. carbidopa is used.)

DRUGS AFFECTED DRUGS WHICH

RESULT OF INTERACTION

DRUGS USED IN ANAESTHESIA

Anaesthetics

All

Antihypertensive drugs

Potentiation of hypotensive effect.

Beta-blockers, e.g. propranolol oxprenolol

Potentiation of hypotensive effect. Loss of compensatory reflex tachycardia.

Chlorpromazine

Potentiation of hypotensive effect. Vasopressors ineffective because chlorpromazine blocks α-receptors.

Halothane Cyclopropane Trichlorethylene (Methoxyflurane) Adrenaline Isoprenaline

These anaesthetics increase the sensitivity of the myocardium to sympathomimetic amines. Cardiac arrhythmias may occur.

L-dopa

Increased risk of cardiac arrhythmias due to dopamine. L-dopa should be stopped 12 hours before surgery.

Methoxyflurane

Tetracyclines

Increased risk of polyuric renal failure.

Muscle relaxants

All

Colistin,
Polymixin B
Quinidine
Propranolol
(large doses)

Increased or prolonged paralysis. These drugs have neuromuscular blocking activity. Not reversed by neostigmine.

Competitive neuromuscular blockers tubocurarine gallamine pancuronium

Aminoglycoside antibiotics Magnesium salts

Increased neuromuscular block. Partially reversed by neostigmine and calcium.