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Preface

For some years 1 have been offering lectures on generalised
functions to undergraduate and postgraduate students. The
undergraduate course was based originally on M.J. Lighthill’s
stimulating book An Introduction to Fourier Analysis and Generalised
Functions which contains a simplified version of a theory evolved
by G. Temple to make generalised functions more readily accessible
and intelligible to students. It is an approach to the theory of
generalised functions which permits early introduction in student
courses whileretaining the power and practical utility of the methods.
At the same time it can be developed so as to include the more
advanced aspects appropriate to postgraduate instruction. This
book has grown from the courses which I have given expounding
the ramifications of the Lighthill-Temple theory to various groups
of students. It is arranged so that sections can be chosen relevant to
any level of course.

Much of the material was originally contained in my book
Generalised Functions, published by McGraw-Hill in 1966, but this
book differs from the earlier version in several major respects.
The treatment and definitions of the special generalised functions
which are powers of the single variable x have been completely
changed as well as those of the powers of the radial distance in
higher dimensions. A different definition of d-functions, whose
support is on a surface, has also been introduced. The properties
of the hyperbolic and ultrahyperbolic distances have been tackled
in another way, with consequences for the general quadratic form.
Numerous subsequent formulae are thereby altered. Further, a
section has been added on the Fourier transform of weak functions
and ultradistributions.

The purpose of the first chapter is to summarise some of the
basic theorems of analysis which are required in subsequent
chapters. It is anticipated that most readers will have met this



Xii Preface

material in one form or another before reading this book. For this
reason explanation and argument have been cut to a minimum and,
consequently, this chapter is not a suitable first reading for those
who have not met several of the analytical ideas before. Since the
chapter is self-contained some readers will, I hope, find it a useful
introduction to the notions and terminology employed in other
books where the approach to the subject has a more topological
character. Many readers will find it profitable, on a first reading, to
start at Chapter 2 and read onwards, referring back to Chapter 1
only for notation and statements of theorems.

In Chapter 2 the properties of good functions are given. Genera-
lised functions of a single variable are introduced in Chapter 3 via
sequences of good functions. After an examination of the derivative,
Fourier transform and limit, the general structure of a generalised
function is determined.

Chapter 4 is concerned with some special generalised functions,
their Fourier transforms and the evaluation of certain integrals
which are too singular to be embraced by classical analysis. The
final section contains a brief discussion of generalised functions
on a half-line.

Chapter 5 is devoted to series of generalised functions and shows,
in particular, that any generalised function can be represented as a
series of Hermite functions. There is also a detailed investigation of
expansions in Fourier series, many theorems being much simpler
than in classical analysis.

The problem of multiplication and division is dealt with in
Chapter 6; the properties of the convolution product are also
derived.

Generalised functions of several variables are introduced in
Chapter 7. Most of the resultsare obvious generalisations of those for
a single variable but new features are the direct product and the
Fourier transform with respect to one of several variables. The last
sections deal with spherically symmetric generalised functions and
integration with respect to a parameter.

Chapter 8 treats the difficult problem of changing variables in a
generalised function. This leads naturally to é-functions on a hyper-
surface and the meaning to be attached to powers of the hyperbolic
distance and its generalisations.
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The asymptotic evaluation of Fourier integrals and the method of
stationary phase in several variables comprise Chapter 9.

Applications of generalised functions are considered in Chapter
10. Particular reference is made to integral equations, ordinary and
partial differential equations, as well as correlation theory.

Chapter 11 brings in the notion of a weak function, which is not so
restricted at infinity as the generalised function. The significance of
weak functions in solving integral equations, ordinary differential
equations and in the justification of the operational method is
shown. The Fourier transform of a weak function and ultradistri-
butions are discussed, as well as the relation between weak functions
and distributions.

The Laplace transform of a weak function is defined in Chapter 12
and a number of applications is given.

Exercises are given at various stages throughout the chapters.
Most of them are to enable the reader to become thoroughly familiar
with the theory. though some are extensions of theorems in the text.
There are also some exercises which are worded so that they could be
used as topics for minor theses. It is hoped that this variety will
provide instructors with plenty of flexibility.

The author takes this opportunity of expressing his thanks to
Mrs D. Ross for turning his manuscript into legible typescript
despite a certain obscurity about the way it was organised.

The author’s gratitude to his wife Ivy, who manages to display
nonchalance and good cheer whatever burden is imposed on her, is
immeasurable.

University of Dundee D.S. Jones
October 1980
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1

Convergence

This chapter is concerned primarily with deriving certain theorems
on convergence which will be required in subsequent chapters. It is
expected that most readers will be familiar with the notions involved
so that much of the material is given in a condensed manner. How-
ever, an attempt has been made to make the chapter self-contained.
Some readers may find the chapter a helpful introduction to the
ideas and terminology employed in other books on generalised
functions. The reader who does not have a good background in
analysis is strongly advised to go straight to Chapter 2 and to just
refer to Chapter 1 for the theorems that are needed.

1.1. Preliminary definitions

A set is a collection of elements. A set containing no elements is
called a null or empty set. There is no restriction on what an element
is: it may be a number or a point or a vector and so on. Usually
we shall call the elements points and take all sets to be sets of points
in a fixed non-empty set Q, which will be called a space. The empty
set will be denoted by F and the capitals A4, B, ... will denote sets. If
w is a point of A, we write we A ; if @ is not a point of A, we write
wéA. Another useful notation is {w| P} for the set of points satisfying
condition P for example, the set of points common to both sets A
and B can be written {®|weA and weB}.

A set of sets is called a class. The class of all sets in @ is called the
space of sets in Q. A class of sets in @ is a set in this space of sets so
that all set theories apply to classes considered as sets in the corres-
ponding space of sets. Classes will be denoted by the script capitals
A, B, ...

If all the points of A are points of B we write A = B or, equivalently,
B> A. Obviously, Ac Aand @<= A= Q.If A= Band B < C then
AcC.lf A= Band Bc A we write A =B.
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The intersection A m B is the set of all points common to 4 and B,
ie. if weA and weB then weAn B and conversely. The union
A U B is the set of all points which belong to at least one of the sets
A or B, ie. if weA or weB then we4uUB and conversely. If
AN B = I the sets A and B are said to be disjoint and their union
may then be called a sum and written as A + B, i.e.if A n B = ¢J then
AuB=A+B.

The difference A — B is the set of all points of A which are not in B,
1e. if we A and wé¢ B then we A — B and conversely. The difference
Q — A is called the complement of A and denoted by A°; it is the set
of all points which do not belong to A.

The following commutative, associative and distributive laws are
valid, i.e.

AUB=BUA, ANnB=BnNA;
(AuB)UC=Au(Bu(),
(ANB)NC=An(BnC);
(AUB)UC =(ANC)U(BNC),
(AuB)N(AUC)=AU(BnC(C).

Relations between sets and their complements are:

Q=5 = Q, AnA* =, A+ A°=Q;
A—B=AnB", (AUB)*= AN B°,
(AN B) = AU B®;

if A < B then A° o B°.

The operations of union and intersection can be extended to
arbitrary classes. Let I be a set, not necessarily in £, and correspond-
ing to each i€ I choose a set A; = Q. The class of sets so chosen will be
denoted by {A4,|iel}. For obvious reasons I is called an index set.
The intersection of {A,|iel} is the set of all points which belong to
every A, and is denoted by (), 4,, i.e.

iel
() A; = {w|we A, for every iel}.
iel
The union | J,_, A, is the set of all points which belong to at least one
A, le.

| 4, = {w|we A, for some i€l}.

iel
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If 4,0 A;=  for all i, jel, i # j, the class {4 ]icI} is said to be a
disjoint class and the union of its sets may be called a sum and deno-
ted by ) A4,.

If w¢ A, then we A7 and conversely. Consequently

(Ua)-na.  (na)-ua W)

iel iel iel iel
By convention
U4, =9, () A,=2. )
i@ ie@

It will be observed that the following principle of duality holds: any
relation between sets involving unions and intersections becomes a valid
relation by replacing v, N, &, Q by N, U, Q, & respectively.

Finally we introduce the notion of equivalence class. Suppose we
have a rule R which places the sets 4 and B in one-to-one corre-
spondence, which we denote by ARB. The relation is reflexive,
ARA; symmetric, ARB implies BRA; transitive, ARB and BRC
~imply ARC. A reflexive, symmetric and transitive relation is called
an equivalence relation. The class {B|BRA} is called the equivalence
class corresponding to 4. In essence an equivalence class is deter-
mined by any one of its members.

A class or set is said to be finite if its elements can be put in one-to-
one correspondence with the first n positive integers, for some n.
It is said to be denumerable if it can be put in one-to-one corres-
pondence with all the positive integers. It is said to be countable
if it is either finite or denumerable.

1.2. Sequ(;nces

For each value of n(=1,2,...) take a corresponding set 4 . The
ordered denumerable class A, 4,, ... is called a sequence and is
denoted by {4, }. It is not necessary that A # A, . The limit superior

Hn A, is defined by
limA,= () {4,
n k=1 n=k

it consists of the set of all those points which belong to infinitely
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many A, . The limit inferior lim A, is defined by
lim ®

Da,= U N A4,

k=1n=k

it consists of the set of all those points which belong to all but a finite
number of A, . Every point which belongs to all but a finite number
of A belongs to infinitely many 4 so that

lim 4, < lim 4, .

If lim A, > lim A, then lim A4, = lim 4, and if this common set be
denoted by A the sequence {4, | is said to converge to A.

A sequence is said to be non-decreasing if A, = A, , for each n;
non-increasing if A, = A, for each n. A monotone sequence is one
which is either non-decreasing or non-increasing. Every monotone
sequence converges and, if it is non-decreasing, En—An =2 4,
whereas if it is non-increasing, lim A, = ()., A,. This follows at
once from the definitions.

The idea of sequence occurs in other ways: thus the sequence {, |
is the ordered denumerable set of points w,,w,.... A subsequence
is obtained by selecting a sequence {n, | of positive integers with
n, > n;wheni > jand selecting the terms w, of the original sequence;
the result is a sequence {w, | whose ith term is the n;th term of the
original sequence.

Many sequences involve real numbers, whose properties we now
briefly review. A set X of real numbers is bounded above by the real
number b if x < b for every xe X ; b is called an upper bound for X.
If b is an upper bound for X, if ¢ is any other upper bound and if
b < ¢ whatever c is then b is the smallest possible upper bound: in
that case b is known as the least upper bound or supremum of X and
written sup X. Sometimes the notation l.u.b. X is used. By reversing
the inequalities in these definitions we define bounded below, lower
bound, greatest lower bound or infimum of X (written inf X).

A fundamental postulate is: every non-empty set of real numbers
which is bounded above possesses a real supremum. If the non-empty
set X of real numbers is bounded below, the set { — x|xe X} is
bounded above and hence possesses a real supremum. Therefore X
has a real infimum, i.e. a non-empty set bounded above and below
possesses both a real supremum and a real infimum.
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The supremum of a sequence {x,, ; is denoted by sup, x, . The limit
superior is defined by

limx, = inf sup x

“n
n k nzk

and the limit inferior by

If a sequence is bounded above and below, it possesses both a real
supremum and a real infimum and so has both a limit superior and a
limit inferior.

The ordinary number system consists of finite numbers; the exten-
ded real number system is obtained by adding the infinite numbers o
and — oo, These symbols have the properties:

x+(+ow)=(x0)+x= =+ 00, : =0 if —ww<x<w;
T ®
e s} =T ) + o f0<x< o
X — O X = .
™ - F o if —o<x<0.

The expression oo — 2 is meaningless so that if one of the sum of two
numbers be + o the other must not be F oo for the sum to exist.

Any set of extended real numbers has both a supremum (which
may be infinite) and an infimum. Consequently every sequence of
extended real numbers has a limit superior and a limit inferior. More-
over, if inclusion, union and intersection of numbers be identified
with x <y, sup,, x,, inf_, x, respectively these operations have the
properties of the corresponding set operations; thus monotone
sequences of extended real numbers (ie. x, , >x, or x,,, <x, for
all n) always converge (possibly to infinity).

The set of all finite numbers — % < x < @ is the real line R, or

(— oo, 0); the set — o0 <x < % is the extended real line R, or

[ — o0, w].

1.3. Functions

If a rule is provided which associates with each we a point
w'eQ’ we say that a function [ on Q or a function from 2 to €' is
defined. The space Q is called the domain of f. The point «" which



