O'REILLY"

Designing for
Scalability with
kErlang/OTP

Erlang/OTPRT ¥ B 1%
ZITERE (2am)

/
/
//,

Francesco Cesarini,
&R HpRat Steve Vinoski &

Erlang/OTPR ¥ B i1%1TH6R wom

Designing for Scalability with Erlang/0TP

Francesco Cesarini,
Steve Vinoski Z&

W O REILLY®

3, INCAR AR K 2 AR A AR

MR REXFHRE

B 7/ 4 B (CIP) 38

Erlang/OTP A 4" J& £ 15 1146 B9 - 3 3/ (32) 3§ 9 7y
HrAk - V)= B JE (Francesco Cesarini), (38) 81 3 & - 5 #F
#:(Steve Vinoski)# . — L EIA. — 5§ 5T : ZR pg K 2 H R
#t,2017.1

4544 J 3 : Designing for Scalability with Erlang/OTP

ISBN 978 —7— 5641 — 6902 - 2

I1.OE NI.0# Q% [M.OBFIES—
BIFRIT—18m-—2c3 N. OTP312-62

of [Wit A B 4548 CIP 3036 4% 5 (2016) 45 318007 &
B .10 2014 - 151 &

© 2016 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2017. Authorized reprint of the original English edition, 2014 O’Reilly Media, Inc., the owner of all rights to

publish and sell the same.
All rights reserved including the rights of reproduction in whole or in part in any form.
¥ LR Ml O'Reilly Media, Inc. 3 #2016,

LM A RS B AR AR 2017, S PR A th R Ao 45 3 AT 3] kR A A 4K B R ed T A &
— O'Reilly Media, Inc.# 7T,

AT RAF B @A T A H AT 5 o o3 RIFOEMH X E 4,

Erlang/OTP 7] " J& P4 % 1148 B (5% B s

A AT : ZREE R R A

oo hk. FERTPUEEEE 25 B 210096
O A e

] ik : http//www .seupress.com

B FMB {4 : press@ seupress.com

il « M T RS = BRI A PR R
A 787 K X980 K 16 A
ik . 30.25

. 59 FT5

W 20174 1 A% 1 IR

W: 2017 46 1 A% 1 YERRI

5: ISBN 978 — 7- 5641 — 6902 — 2
#r: 94.00 7C 5

M EFNHEHE

A P 2 A B IR B) B T B S IR R . HE (5 ED) . 025 - 83791830

To Alison, Peter and baby Bump for being patient and supportive.

—Francesco

To Dooley and Ed, for teaching me how, and to Cindy, Ryan, Erin, Andrew, and Jake,
for being why.

—Steve

To Joe, Mike, Robert, for making that phone call.

—Francesco & Steve

Preface

This book is what you get if you put together an Erlang enthusiast who worked on
the R1 release of OTP in 1996 and a Distributed Systems specialist who discovered a
decade later how Erlang/OTP allows you to focus on the real challenges of systems
development while avoiding accidental difficulties.

By describing how OTP behaviors are built and why they are needed, we show you
how to use them to architect standalone nodes. In our original proposal to O’Reilly,
we stopped here. But when writing the book, we decided to push the bar further, doc-
umenting our practices, design decisions, and common pitfalls when architecting a
distributed system. These patterns, through a set of design choices and tradeoffs we
make, give us the scalability, reliability, and availability for which Erlang/OTP is well
known. Contrary to popular belief, this does not happen magically or out of the box,
but it sure is much easier to achieve than with any other programming language out
there that does not emulate Erlang’s semantics nor run on the BEAM virtual
machine.

Francesco: Why This Book?

Someone once told me that writing books is a bit like having children. Once you’ve
written one and are holding your paper copy, excitement takes over, you quickly for-
get the hard work and sacrifices, and you want to start writing another one. I've been
intending to write the sequel to Erlang Programming (O'Reilly) since first holding the
paper copy in June 2009. I had no children of my own when I started this project, but
it ended up taking so long that my second one is now on its way. Whoever said that
good things are not worth waiting for? '

As with the first book, we based Designing for Scalability with Erlang/OTP on the
examples in the Erlang Solution’s OTP training material I developed. I used the
examples and started explaining them, converting my lectures and approach to teach-
ing into words. When done with a chapter, I went back and ensured the parts stu-
dents struggled to understand were clear. Questions that were commonly asked by

Preface | xiii

the best students ended up in sidebars, and long chapters were divided into smaller
ones. It all went well until we reached Chapter 11 and 12, because there was no uni-
fied way of doing release handling or software upgrade. Rather, there were tools,
many of them. Some were integrated in our client’s build and release cycle, others
worked out of the box. Some were unusable. The chapters are what we hope will
become the ultimate guide to anyone wanting to understand how release handling
and software upgrade of systems works behind the scenes. They also explain what
you need to know should you have to troubleshoot existing tools or write your own.

But the real trouble started with Chapter 13. Not having examples or training mate-
rial, I found myself formalizing what was in our heads and documenting the
approaches we take when architecting Erlang/OTP systems, trying to align it with the
theory of distributed computing. Chapter 13 turned into four chapters that took as
long to write as the first ten. For those of you who bought the early access, I hope the
wait was worth it. For those who wisely waited for us to finish before buying your
copy, enjoy!

Steve: Why This Book?

I first discovered Erlang/OTP in 2006 while researching ways to develop enterprise
integration software faster, cheaper, and better. No matter how I looked at it,
Erlang/OTP was clearly superior to the C++ and Java languages my colleagues and I
had long been using at that time. In 2007 I joined a new company and began using
Erlang/OTP for a commercial product, and it turned out to be everything my earlier
investigation promised it would be. I taught the language to some colleagues and
before long, fewer than a handful of us were developing software that was more capa-
ble, more reliable, easier to evolve, and ready for production far faster than similar
code being written by a significantly larger team of C++ programmers. To this day I
remain wholly convinced of the impressive practical effectiveness of Erlang/OTP.

Over the years I've published quite a bit of technical material, and my intended audi-
ence for all of it has always been other practitioners like me. This book is no excep-
tion. In the first 12 chapters we provide the deep level of detail that practicing
developers need in order to fully understand the fundamental design principles of
OTP. With those details we mix a number of useful nuggets of practical knowledge—
modules, functions, and approaches that will save you significant time and effort in
your day-to-day design, development, and debugging efforts. In the final four chap-
ters we shift gears, focusing more on the big picture of the tradeoffs involved in
developing, deploying, and operating resilient, scalable distributed applications. Due
to the staggering amount of knowledge, approaches, and tradeoffs involved in dis-
tributed systems, fault tolerance, and DevOps, writing these chapters concisely
proved difficult, but I believe we hit just the right balance of providing plenty of great
advice without getting lost in the weeds.

xiv | Preface

I hope this book helps you improve the quality and utility of the software and systems
you develop.

Who Should Read This Book

This book’s intended audience includes Erlang and Elixir developers and architects
who have made their way through at least one of the introductory books and are
ready to take their knowledge to the next level. It is not a book to start off with, but
rather the book that picks up where all others leave you. Chapters 3-12 build on each
other and should be read sequentially, as do Chapters 13-16. If you do not need an
Erlang primer, feel free to skip Chapter 2.

How To Read This Book

We wrote this book to be compatible with Erlang Release 18.2. Most of the features
we describe work with earlier releases; major features that don’t are indicated in the
book. Currently unknown incompatibilities with future releases will be detailed on
our errata page and fixed in the book’s github repository. You are encouraged to
download the examples in the book from our github repository and run them your-
self to better understand them.

Acknowledgments

Writing this book has been a long journey. While undertaking it we’ve had a lot of
great help from a lot of wonderful people. Our editor Andy Oram has been an end-
less source of ideas and suggestions, patiently guiding us, giving us feedback while
providing ongoing encouragement. Thank you Andy, we couldn’t have done it
without you! Simon Thompson, coauthor of Erlang Programming helped with the
book proposal and laid the foundation for the second chapter. Many thanks to Rob-
ert Virding for contributing some of the examples. We’ve had many readers, review-
ers and contributors give us feedback as we drip-fed them the chapters. At the risk of
forgetting someone, they are: are Richard Ben Aleya, Roberto Aloi, Jesper Louis
Andersen, Bob Balance, Eva Bihari, Martin Bodocky, Natalia Chechina, Jean-
Frangois Cloutier, Richard Croucher, Viktéria Fordds, Heinz Gies, Joacim Halén,
Fred Hebert, Csaba Hoch, Torben Hoffmann, Bob Ippolito, Aman Kohli, Jan Willem
Luiten, Jay Nelson, Robby Raschke, Andrzej Sliwa, David Smith, Sam Tavakoli, Pre-
manand Thangamani, Jan Uhlig, John Warwick, David Welton, Ulf Wiger, and
Alexander Yong. If we missed you, our sincere apologies! Drop us an email and you
will be promptly added. A shout-out goes to the staff at Erlang Solutions for reading
the chapters as they were being written and everyone else who submitted to the errata
as part of the early release. A special thank you goes to all of you who cheered us on
through social media channels, especially other authors. You know who you are! Last,

Preface | xv

but not least, thanks to the production, marketing, and conference teams at O’Reilly
who kept on reminding us that it’s not over until you are holding the paper copy. We
really appreciate your support!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, applications, URLs, email addresses, filenames, directory
names, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. Also used for behaviors, commands, and
command-line options.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip or suggestion.

This icon signifies a general note.

This icon indicates a warning or caution.

\

xvi | Preface

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at:
https://github.com/francescoc/scalabilitywitherlangotp

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Designing for Scalability with
Erlang/OTP by Francesco Cesarini and Steve Vinoski (O’Reilly). Copyright 2016
Francesco Cesarini and Stephen Vinoski, 978-1-449-32073-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

' - Safari Books Online is an on-demand digital library that lets
. Sa | d | | you easily search over 7,500 technology and creative reference
books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your favor-
ites, download chapters, bookmark key sections, create notes, print out pages, and
benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

Preface | xvii

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://bit.ly/designing-for-scalability-with-erlangotp
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xviii | Preface

Table of Contents

IMBRIOR 1 T Ve s s s v s v bis bolss woimais SRR RO ARy iy [LT T xiii
T INGDUORONCE | 50100 RTINS oo o nwe PRREUIT 200N L RS R 0. 1
Defining the Problem 2
OTP 4
Erlang 6
Tools and Libraries 7
System Design Principles 10
Erlang Nodes 11
Distribution, Infrastructure, and Multicore 12
Summing Up 13
What You'll Learn in This Book 14

E INtroduangBrani. clvionovs sio s tus sebsaonss ves s BT TN LSRN B 4 0in 21
Recursion and Pattern Matching 21
Functional Influence 25
Fun with Anonymous Functions 25

List Comprehensions: Generate and Test 27
Processes and Message Passing 29
Fail Safe! 33
Links and Monitors for Supervision 34
Links 35
Monitors 37
Records 38
Maps 41
Macros 42
Upgrading Modules 43

ETS: Erlang Term Storage _ 45

Distributed Erlang ' 48

Naming and Communication 48
Node Connections and Visibility 49
Summing Up 51
What’s Next? 51
A R R T e TR L SO e R Py 53
Process Skeletons 53
Design Patterns 56
Callback Modules 57
Extracting Generic Behaviors 60
Starting the Server 62
The Client Functions 64
The Server Loop 66
Functions Internal to the Server 68
The Generic Server 69
Message Passing: Under the Hood 72
Summing Up 76
What’s Next? 76
4. GoNHCSEVRIS.ocasvivmsnyussvasviesss inn vovgvnans camin L e S
Generic Servers 77
Behavior Directives 78
Starting a Server 80
Message Passing 82
Synchronous Message Passing 82
Asynchronous Message Passing 84
Other Messages 85
Unhandled Messages 86
‘Synchronizing Clients 88
Termination 89
Call Timeouts 91
Deadlocks 94
Generic Server Timeouts 95
Hibernating Behaviors 97
Going Global 97
Linking Behaviors 99
Summing Up 99
What’s Next? 100
£ Controlling OTP BehaVlors. .o 2oi . . oo covnvons snapnoin bomatubaiivs sesiinesasis 101
The sys Module) 101

vi | Tableof Contents

Tracing and Logging 101
System Messages 103
Your Own Trace Functions 103
Statistics, Status, and State 105
The sys Module Recap 107
Spawn Options 108
Memory Management and Garbage Collection 109
Spawn Options to Avoid 113
Timeouts 114
Summing Up 114
What’s Next? 114
Finite State Machines........ AN Foverisanes Wsawe Lo denane b RATBRE I RS 17
Finite State Machines the Erlang Way 118
Coffee FSM 119
The Hardware Stub 121
The Erlang Coffee Machine 122
Generic FSMs 125
A Behavior Example 127
Starting the FSM 127
Sending Events 131
Termination 139
Summing Up 141
Get Your Hands Dirty 141
The Phone Controllers 141
Let’s Test It 143
What’s Next? 145
EVOIHERGIRLS. o i's vms ol Tt SRR st Rials s WS i i st n + 147
Events 147
Generic Event Managers and Handlers 149
Starting and Stopping Event Managers 149
Adding Event Handlers 150
Deleting an Event Handler 152
Sending Synchronous and Asynchronous Events 153
Retrieving Data 156
Handling Errors and Invalid Return Values 158
Swapping Event Handlers 160
Wrapping It All Up 162
The SASL Alarm Handler 165
Summing Up 166
What’s Next? 167

Table of Contents | vii

8. Supervisors........ AR T R w e Sy R s a R A R R s 169

Supervision Trees 170
OTP Supervisors 174
The Supervisor Behavior 175
Starting the Supervisor 176
The Supervisor Specification 179
Dynamic Children 186
Non-OTP-Compliant Processes 194
Scalability and Short-Lived Processes 195
Synchronous Starts for Determinism 197
Testing Your Supervision Strategy 199
How Does This Compare? 200
Summing Up 201
What’s Next? 201
93 ADPHCHIONR:. 5 T3E oo o vanann susbvinmesinins irasnasi o e ahe Pl g ahae's 203
How Applications Run 204
The Application Structure 206
The Callback Module 209
Starting and Stopping Applications 210
Application Resource Files 213
The Base Station Controller Application File 215
Starting an Application 216
Environment Variables 219
Application Types and Termination Strategies 221
Distributed Applications 222
Start Phases 226
Included Applications 228
Start Phases in Included Applications 228
Combining Supervisors and Applications 230
The SASL Application 231
Progress Reports 236
Error Reports 236
Crash Reports 237
Supervisor Reports 238
Summing Up 239
What’s Next? 240
10. Special Processes and Your Own Behaviors.ccooviviniiininiiiinnnn... 241
Special Processes 242
The Mutex 242
Starting Special Processes . 244

viii | Tableof Contents

The Mutex States 247

Handling Exits 247
System Messages 249
Trace and Log Events 250
Putting It Together 251
Dynamic Modules and Hibernating 255
Your Own Behaviors 255
Rules for Creating Behaviors 256
An Example Handling TCP Streams 256
Summing Up 260
What’s Next? 261
. System Principles and Release Handling.cooviiiniiiiiiin, 263
System Principles 264
Release Directory Structure 265
Release Resource Files 269
Creating a Release 273
Creating the Boot File 274
Creating a Release Package 283
Start Scripts and Configuring on the Target 287
Arguments and Flags 290
The init Module 302
Rebar3 303
Generating a Rebar3 Release Project 304
Creating a Release with Rebar3 308
Rebar3 Releases with Project Dependencies 310
Wrapping Up 312
What’s Next? 316
. Release Upgrades.......... svue s opmnaene sive spIIANENS SRR IR DI SRIDRSERE 317
Software Upgrades 318
The First Version of the Coffee FSM 320
Adding a State 323
Creating a Release Upgrade 326
The Code to Upgrade 330
Application Upgrade Files 333
High-Level Instructions 337
Release Upgrade Files 339
Low-Level Instructions 342
Installing an Upgrade 343
The Release Handler 346
Upgrading Environment Variables 350

Table of Contents ix

13.

14.

15.

16.

Upgrading Special Processes

Upgrading in Distributed Environments
Upgrading the Emulator and Core Applications
Upgrades with Rebar3

Summing Up

What’s Next?

Distributed ArchitectUres.oovevevieierernereeersnsnresensassnesansenes

Node Types and Families
Networking
Distributed Erlang
Sockets and SSL
Service Orientation and Microservices
Peer to Peer
Interfaces
Summing Up
What’s Next?

Systems That Never Stop................ vbwv e e BRSO

Availability

Fault Tolerance

Resilience

Reliability

Sharing Data

Tradeoffs Between Consistency and Availability
Summing Up
What’s Next?

Lo T S A G N SRR N e ey

Horizontal and Vertical Scaling
Capacity Planning

Capacity Testing

Balancing Your System

Finding Bottlenecks

System Blueprints
Load Regulation and Backpressure
Summing Up
What’s Next?

Monitoring and Preemptive SUpport..........coovvviiiiiiiiiiiininiennnne,

Monitoring
Logs

350
351
352
353
356
358

359
360
363
366
373
375
376
377
380
381

383
383
384
385
387
392
400
401
403

405
405
409
412
414
416
419
419
422
424

425
426
428

X

Table of Contents

Metrics

Alarms
Preemptive Support
Summing Up
What’s Next?

--

433
436
439
441
443

Table of Contents

| xi

