FINANCIAL SIGNAL
PROCESSING AND
MACHINE LEARNING

EDITED BY
ALI N. AKANSU
SANJEEV R. KULKARNI
DMITRY M. MALIOUTOV

Al JLs

IEEE PRESS WILEY



FINANCIAL SIGNAL
PROCESSING AND
MACHINE LEARNING

Edited by

Ali N. Akansu
New Jersey Institute of Technology, USA

Sanjeev R. Kulkarni

Princeton University, USA

Dmitry Malioutov
IBM T.J. Watson Research Center, USA

wl| Jh
IEEE PRESS

WILEY



This edition first published 2016
© 2016 John Wiley & Sons, Ltd
First Edition published in 2016

Registered office
John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright.
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted. in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names. service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required. the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data applied for
ISBN: 9781 1 18745670

A catalogue record for this book is available from the British Library.
Set in 10/12pt. TimesL.TStd by SPi Global. Chennai. India.

Printed and bound in Singapore by Markono Print Media Pte Ltd

1 2016



[ist of Contributors

Ali N. Akansu, New Jersey Institute of Technology, USA
Marco Cuturi, Kyoto University, Japan

Alexandre d’Aspremont, CNRS - Ecole Normale supérieure, France
Christine De Mol. Université Libre de Bruxelles, Belgium
Jianqing Fan, Princeton University, USA

Jun-ya Gotoh, Chuo University, Japan

Nicholas A. James, Cornell University, USA

Prabhanjan Kambadur, Bloomberg L.P., USA

Alexander Kreinin, Risk Analytics, IBM, Canada

Sanjeev R. Kulkarni, Princeton University, USA

Yuan Liao, University of Maryland, USA

Han Liu, Princeton University, USA

Matthew Lorig, University of Washington, USA

Aurélie C. Lozano. IBM T.J. Watson Research Center, USA
Ronny Luss, IBM T.J. Watson Research Center, USA
Dmitry Malioutov, IBM T.J. Watson Research Center, USA

David S. Matteson, Cornell University, USA



xiv

List of Contributors

William B. Nicholson, Cornell University, USA

Ronnie Sircar, Princeton University, USA

Akiko Takeda, The University of Tokyo, Japan

Mustafa U. Torun, New Jersey Institute of Technology, USA
Stan Uryasev, University of Florida, USA

Onur Yilmaz, New Jersey Institute of Technology. USA



Preface

This edited volume collects and unifies a number of recent advances in the signal-processing
and machine-learning literature with significant applications in financial risk and portfolio
management. The topics in the volume include characterizing statistical dependence and cor-
relation in high dimensions, constructing effective and robust risk measures, and using these
notions of risk in portfolio optimization and rebalancing through the lens of convex optimiza-
tion, It also presents signal-processing approaches to model return, momentum, and mean
reversion, including both theoretical and implementation aspects. Modern finance has become
global and highly interconnected. Hence, these topics are of great importance in portfolio
management and trading, where the financial industry is forced to deal with large and diverse
portfolios in a variety of asset classes. The investment universe now includes tens of thou-
sands of international equities and corporate bonds, and a wide variety of other interest rate
and derivative products-often with limited, sparse, and noisy market data.

Using traditional risk measures and return forecasting (such as historical sample covariance
and sample means in Markowitz theory) in high-dimensional settings is fraught with peril for
portfolio optimization, as widely recognized by practitioners. Tools from high-dimensional
statistics, such as factor models, eigen-analysis, and various forms of regularization that
are widely used in real-time risk measurement of massive portfolios and for designing
a variety of trading strategies including statistical arbitrage, are highlighted in the book.
The dramatic improvements in computational power and special-purpose hardware such as
field programmable gate arrays (FPGAs) and graphics processing units (GPUs) along with
low-latency data communications facilitate the realization of these sophisticated financial
algorithms that not long ago were “hard to implement.”

The book covers a number of topics that have been popular recently in machine learning
and signal processing to solve problems with large portfolios. In particular, the connections
between the portfolio theory and sparse learning and compressed sensing, robust optimiza-
tion, non-Gaussian data-driven risk measures, graphical models, causal analysis through
temporal-causal modeling, and large-scale copula-based approaches are highlighted in
the book.

Although some of these techniques already have been used in finance and reported in jour-
nals and conferences of different disciplines, this book attempts to give a unified treatment
from a common mathematical perspective of high-dimensional statistics and convex optimiza-
tion. Traditionally, the academic quantitative finance community did not have much overlap
with the signal and information-processing communities. However, the fields are seeing more
interaction, and this trend is accelerating due to the paradigm in the financial sector which has



xvi Preface

embraced state-of-the-art, high-performance computing and signal-processing technologies.
Thus, engineers play an important role in this financial ecosystem. The goal of this edited
volume is to help to bridge the divide, and to highlight machine learning and signal processing
as disciplines that may help drive innovations in quantitative finance and electronic trading,
including high-frequency trading.

The reader is assumed to have graduate-level knowledge in linear algebra, probability, and
statistics, and an appreciation for the key concepts in optimization. Each chapter provides a
list of references for readers who would like to pursue the topic in more depth. The book,
complemented with a primer in financial engineering, may serve as the main textbook for a
graduate course in financial signal processing.

We would like to thank all the authors who contributed to this volume as well as all of the
anonymous reviewers who provided valuable feedback on the chapters in this book. We also
gratefully acknowledge the editors and staff at Wiley for their efforts in bringing this project
to fruition.
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1

Overview

Financial Signal Processing and Machine
Learning

Ali N. Akansu', Sanjeev R. Kulkarni?, and Dmitry Malioutov?

"New Jersey Institute of Technology, USA
2 Princeton University, USA
3IBM T.J. Watson Research Center, USA

1.1 Introduction

In the last decade, we have seen dramatic growth in applications for signal-processing and
machine-learning techniques in many enterprise and industrial settings. Advertising, real
estate, healthcare, e-commerce, and many other industries have been radically transformed
by new processes and practices relying on collecting and analyzing data about operations,
customers, competitors, new opportunities, and other aspects of business. The financial
industry has been one of the early adopters, with a long history of applying sophisticated
methods and models to analyze relevant data and make intelligent decisions — ranging
from the quadratic programming formulation in Markowitz portfolio selection (Markowitz,
1952), factor analysis for equity modeling (Fama and French, 1993), stochastic differential
equations for option pricing (Black and Scholes, 1973), stochastic volatility models in risk
management (Engle, 1982; Hull and White, 1987), reinforcement learning for optimal trade
execution (Bertsimas and Lo, 1998), and many other examples. While there is a great deal of
overlap among techniques in machine learning, signal processing and financial econometrics,
historically, there has been rather limited awareness and slow permeation of new ideas among
these areas of research. For example, the ideas of stochastic volatility and copula modeling,
which are quite central in financial econometrics, are less known in the signal-processing
literature, and the concepts of sparse modeling and optimization that have had a transformative
impact on signal processing and statistics have only started to propagate slowly into financial

Finaneial Signal Processing and Machine Learning, First Edition.
Edited by Ali N. Akansu, Sanjeev R. Kulkarni and Dmitry Malioutov.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



2 Financial Signal Processing and Machine Learning

applications. The aim of this book is to raise awareness of possible synergies and interactions
among these disciplines, present some recent developments in signal processing and machine
learning with applications in finance, and also facilitate interested experts in signal processing
to learn more about applications and tools that have been developed and widely used by the
financial community.

We start this chapter with a brief summary of basic concepts in finance and risk manage-
ment that appear throughout the rest of the book. We present the underlying technical themes,
including sparse learning, convex optimization, and non-Gaussian modeling, followed by brief
overviews of the chapters in the book. Finally, we mention a number of highly relevant topics
that have not been included in the volume due to lack of space.

1.2 A Bird’s-Eye View of Finance

The financial ecosystem and markets have been transformed with the advent of new tech-
nologies where almost any financial product can be traded in the globally interconnected
cyberspace of financial exchanges by anyone, anywhere, and anytime. This systemic change
has placed real-time data acquisition and handling, low-latency communications technologies
and services, and high-performance processing and automated decision making at the core
of such complex systems. The industry has already coined the term big data finance, and it is
interesting to see that technology is leading the financial industry as it has been in other sectors
like e-commerce, internet multimedia, and wireless communications. In contrast, the knowl-
edge base and exposure of the engineering community to the financial sector and its relevant
activity have been quite limited. Recently, there have been an increasing number of publica-
tions by the engineering community in the finance literature, including A Primer for Financial
Engineering (Akansu and Torun, 2015) and research contributions like Akansu er al., (2012)
and Pollak ez al.. (2011). This volume facilitates that trend, and it is composed of chapter
contributions on selected topics written by prominent researchers in quantitative finance and
financial engineering.

We start by sketching a very broad-stroke view of the field of finance, its objectives, and
its participants to put the chapters into context for readers with engineering expertise. Finance
broadly deals with all aspects of money management, including borrowing and lending, trans-
fer of money across continents, investment and price discovery, and asset and liability manage-
ment by governments, corporations, and individuals. We focus specifically on trading where
the main participants may be roughly classified into hedgers, investors, speculators, and market
makers (and other intermediaries). Despite their different goals, all participants try to balance
the two basic objectives in trading: to maximize future expected rewards (returns) and to min-
imize the risk of potential losses.

Naturally, one desires to buy a product cheap and sell it at a higher price in order to achieve
the ultimate goal of profiting from this trading activity. Therefore, the expected return of an
investment over any holding time (horizon) is one of the two fundamental performance met-
rics of a trade. The complementary metric is its variation, often measured as the standard
deviation over a time window, and called investment risk or market risk.! Return and risk are
two typically conflicting but interwoven measures, and risk-normalized return (Sharpe ratio)

! There are other types of risk. including credit risk, liquidity risk. model risk, and systemic risk, that may also need
to be considered by market participants.
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finds its common use in many areas of finance. Portfolio optimization involves balancing
risk and reward to achieve investment objectives by optimally combining multiple financial
instruments into a portfolio. The critical ingredient in forming portfolios is to characterize the
statistical dependence between prices of various financial instruments in the portfolio. The
celebrated Markowitz portfolio formulation (Markowitz, 1952) was the first principled mathe-
matical framework to balance risk and reward based on the covariance matrix (also known
as the variance-covariance or VCV matrix in finance) of returns (or log-returns) of finan-
cial instruments as a measure of statistical dependence. Portfolio management is a rich and
active field, and many other formulations have been proposed, including risk parity portfolios
(Roncalli, 2013), Black-Litterman portfolios (Black and Litterman, 1992), log-optimal port-
folios (Cover and Ordentlich, 1996), and conditional value at risk (¢VaR) and coherent risk
measures for portfolios (Rockafellar and Uryasev, 2000) that address various aspects ranging
from the difficulty of estimating the risk and return for large portfolios to the non-Gaussian
nature of financial time series, and to more complex utility functions of investors.

The recognition of a price inefficiency is one of the crucial pieces of information to trade
that product. If the price is deemed to be low based on some analysis (e.g. fundamental or
statistical), an investor would like to buy it with the expectation that the price will go up in
time. Similarly, one would shortsell it (borrow the product from a lender with some fee and
sell it at the current market price) when its price is forecast to be higher than what it should be.
Then, the investor would later buy to cover it (buy from the market and return the borrowed
product back to the lender) when the price goes down. This set of transactions is the building
block of any sophisticated financial trading activity. The main challenge is to identify price
inefficiencies, also called alpha of a product, and swiftly act upon it for the purpose of mak-
ing a profit from the trade. The efficient market hypothesis (EMH) stipulates that the market
instantaneously aggregates and reflects all of the relevant information to price various securi-
ties: hence, it is impossible to beat the market. However, violations of the EMH assumptions
abound: unequal availability of information, access to high-speed infrastructure, and various
frictions and regulations in the market have fostered a vast and thriving trading industry.

Fundamental investors find alpha (i.e., predict the expected return) based on their knowl-
edge of enterprise strategy, competitive advantage, aptitude of its leadership, economic and
political developments, and future outlook. Traders often find inefficiencies that arise due
to the complexity of market operations. Inefficiencies come from various sources such as
market regulations. complexity of exchange operations, varying latency, private sources of
information, and complex statistical considerations. An arbitrage is a typically short-lived
market anomaly where the same financial instrument can be bought at one venue (exchange)
for a lower price than it can be simultaneously sold at another venue. Relative value strategies
recognize that similar instruments can exhibit significant (unjustified) price differences.
Statistical trading strategies, including statistical arbitrage, find patterns and correlations in
historical trading data using machine-learning methods and tools like factor models, and
attempt to exploit them hoping that these relations will persist in the future. Some market
inefficiencies arise due to unequal access to information, or the speed of dissemination of
this information. The various sources of market inefficiencies give rise to trading strategies
at different frequencies, from high-frequency traders who hold their positions on the order
of milliseconds, to midfrequency trading that ranges from intraday (holding no overnight
position) to a span of a few days, and to long-term trading ranging from a few weeks to years.
High-frequency trading requires state-of-the-art computing, network communications, and



