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Preface

Is the teaching of electricity and magnetism in need of change? One might imagine
that any change needed was accomplished with the development of the Berkeley
Physics Course (McGraw Hill, New ‘York, 1963-5) and with the appearance of The
Feynman Lectures in Physics (Addison-Wesley, New York, 1964). Not so. Feynman
himself says in his preface: ‘In the second year I was not so satisfied. In the first
part of the course, dealing with electricity and magnetism, I could not think of any
really unique or different way of doing it — of any way that would be particularly
more exciting than the usual way of presenting it. So I don’t think I did very much
in the lectures on electricity and magnetism.” The preface to the Berkeley Physics
Course says: ‘Our specific objectives were to introduce coherently into an elemen-
tary curriculum the ideas of special relativity, of quantum mechanics, and of
statistical physics.” There is no mention of comprehensive rethinking of the presen-
tation of electricity and magnetism.

The preface to Volume II of the Berkeley Physics Course dealing with electricity
and magnetism says: ‘The sequence of topics is, in rough outline, not unusual. . ...
The difference is most conspicuous in Chapters 5 and 6 where, building on the
work of Vol. I, we treat electric and magnetic fields of moving charges as manifes-
tations of relativity and the invariance of electric charge.” The book certainly does
make it easier for a student to understand particle accelerators, but not ordinary
electrical machines that do not involve relativistic velocities. I doubt if a student
who has studied the book could explain in terms of simple physics not involving
corrections of order (v/c)? how, for the same machine performing the same task,
different charge distributions are acquired as seen by two different observers, one
fixed relative to the field-winding and the other fixed relative is the armature-winding.

The preface to Volume II of the Berkeley Physics Course goes on to say: ‘This
approach focuses attention on some fundamental questions, such as: charge con-
servation, charge invariance, the meaning of field.” Yet the meaning of field is
obscured in the book precisely where charge conservation is concerned. The
Maxwell equations divide into two groups. There are two equations involving E
and B that are directly concerned with the exercise of force in accordance with
the expression E + v x B; they correspond to the kinetic equations in mechanics.
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The other two Maxwell equations are relations between the quantities H, D, J,p
that are concerned with current and charge geometry; the unit of H is current per
unit distance, that of D is charge per unit area, that of J is current per unit area, and
that of p is charge per unit volume. These two Maxwell equations may be likened
to the equations of kinematics in mechanics; they incorporate the principle of
conservation of charge embodied in the equation of continuity. I know of no book
that adequately brings out the quite different physical bases that exist for the E,
B Maxwell equations and for the H, D, J, p Maxwell equations.

These considerations led me to question the conventional presentation of
electricity and magnetism. In consequence, the entire basis of electricity and
magnetism, as well as the methods used for teaching it, have been subjected to the
kind of original thinking customarily reserved for research. In some areas this has
confirmed the wisdom of the traditional approach, but in other areas improvements
have come to light. In some cases, the fresh thought has actually resurrected in
novel form'ideas that people once discarded. But wherever the electric-flux-density
vector D is concerned, the changes triggered by the fresh thinking have turned out
to be substantial. Even in this respect, however, an interesting link exists to the
early thinking of Faraday.

Radiation from antennas has always been treated by dissecting the current into
elements and regarding each current element, together with the associated charges
at its ends, as an electric dipole. It is possible, and frequently desirable, to treat
any flow of free electric current as a distribution of free electric moment per unit
volume P;. As in the case of bound current and charge associated with bound
electric moment per unit volume P, the free current density is the time-derivative
of P; and the free charge density is the negative divergence of Py. Propagation of
electromagnetic waves in a plasma has been treated for half a century by handling
the free electric moment per unit volume Py in a plasma in the same way as is
done for the bound electric moment per unit volume Py, in a dielectric. This means
that the electric-flux-density vector used in connection with the complex dielectric
constant (or tensor) of a plasma is not identical with the vector D introduced in
most elementary textbooks in connection with dielectric insulators.

Care is necessary to distinguish between three different versions of the electric-
flux-density vector in materials. For an oscillatory field of angular frequency w in
material of dielectric constant €/, and conductivity o, the three versions of the
complex electric-flux-density vector at a point where the complex electric vector
is £ are €,E, €E, and (e —jo/w)E. The first of these is the electric-flux-density
vector to be used if one simply regards the material as creating an additional distri-
bution of current and charge in free space. On the other hand, e is an electric-
flux-density vector that suppresses in Maxwell’s equations the currents and charges
associated with the bound electric moment per unit volume Py, ; this is convenient
when discussing the design and operation of equipment where special atten-
tion needs to be paid to the free currents and charges on good conductors. But
(e —jo/w)E is an electric-flux-density vector that suppresses in Maxwell’s equations
the currents and charges associated with both the bound electric moment per unit
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volume Py, and the free electric moment per unit volume Py; it is usually the con-
venient one to use when the wave character of the electromagnetic field under
study is dominant. For any time-varying electromagnetic field in any material,
including non-linear and non-isotropic materials, the three versions of the electric-
flux-density vector are, respectively, €oF, €oE + Py, and €oE + Py, + Py,

The upshot of the thinking outlined in this preface has been a presentation of
electricity and magnetism in three parts. These do not correspond to electrostatics,
magnetostatics, and electromagnetism. Instead they deal with:

(1) electromagnetic fields in free space,
(2) electromagnetic fields in materials, and
(3) energy in electromagnetism.

Consistent with not requiring the reader to take leaps in the dark, Part 1 follows a
direct route to the calculation of the electromagnetic field in free space caused by
any known distribution of time-varying electric current and its associated distri-
bution of time-varying electric charge. Dielectric and magnetic materials do not
appear explicitly in Part 1;conductors appear only as locations for electric currents
and charges.

Materials constitute, from an electromagnetic standpoint, distributions of
current and charge in free space additional to the primary sources of the field. But
usually these additional currents and charges are not immediately known. The local
dipole moments are not known because they depend on the local electromagnetic
field, which is just what we are trying to calculate. This is the fundamental com-
plication created in electromagnetic theory by the presence of materials. It is this
complication that is the subject of Part 2.

The magnetic vector potential at a point in an electromagnetic field is presented
as the electromagnetic momentum per unit charge of a test charge located at the
point, the total momentum of a particle being the vector sum of its mechanical
momentum and its electromagnetic momentum. Currents round circuits are then
seen as electronic fly-wheels for which the effect of charge is normally much
greater than that of mass. Also, in Part 3, the reader is encouraged to think of the
Poynting vector as representing a flow of energy in space that can be intercepted
and measured in substantially the way in which flow of energy along a power line
can be intercepted and measured. The vector field £ x H is not then a by-product
of Poynting’s theorem plagued by an indeterminacy involving closed flow of energy.
On the contrary, the Poynting vector is something as vivid as the product V7 on
the basis of which consumers of electric power pay their bills.

In the division of subject matter described above, the present volume con-
stitutes Part 3. Chapters 1 and 2 summarise the contents of Parts 1 and 2 concerning
electromagnetic fields in free space and in materials. They therefore deal in outline
form with a number of the approaches developed in Parts 1 and 2. A few prob-
lems are provided, not as exercises, but to incorporate in suscinct form relevant
additional material.

A number of the ideas employed in this text have been under development
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for a considerable period of time. Some originated in the Bell Telephone Labora-
tories before World War 11, some came to the fore in connection with radar research,
some appeared in lectures given by the author at the University of Cambridge, and
some in a text (Henry G. Booker, An Approach to Electrical Science, McGraw Hill,
New York, 1959) written at Cornell University. But it is a sequence of courses
presented in recent years at the University of California, San Diego, that has pro-
vided the opportunity to assemble this book. The work was supported by an
Instructional Improvement Grant from the University of California. My thanks
are due to Pat Norvell for converting almost illegible manuscript into readable
typescript, to Jerry Ferguson and Reza MajidiAhi for performing the computations
needed for some of the diagrams, and to Hari Vats for reading the proof.

Henry G. Booker
January 1981



Contents

Preface

1

Electromagnetic fields in free space

1.1

—
N nm s W

b ek P pnd ek ek et
- % . s v s
— = D 00

AWM= O

1.15

Introduction

Force in an electromagnetic field

The vector field of magnetic flux density B

Electric charge and current

The vector field of electric flux density D

The magnetic vector H

Electromagnetic fields as aggregates of elementary inductors
and capacitors

The relation of the (E, B) fields to the (D, H) fields in free space
The electromagnetic potentials

Electric moment per unit volume

The electric Hertzian potential

Magnetic moment per unit volume

The magnetic Hertzian potential

The degree of utility of the concepts of magnetic charge and
current

Relative motion in electromagnensm

Problems

Electromagnetic fields in materials

2.1

el bl b
Qounpwi

Introduction

The constitutive functions for materials

Version 1 of the electromagnetic equations for materials
Version 2 of the electromagnetic equations for materials
Version 3 of the electromagnetic equations for materials
Linear isotropic material

The electromagnetic equations for linear 1sotrop1c non-
conducting material at rest relative to the observer
Radiation from a fixed time-varying dipole into fixed
homogeneous linear isotropic non-conducting material
Complex electromagnetic vectors

The complex electromagnetic equations for linear isotropic
material at rest relative to the observer



vi

Contents

Radiation from a fixed oscillatory dipole into fixed homogeneous
linear isotropic material possessing conductivity

Models of materials possessing conduction and dielectric
properties

Materials in motion relative to the observer

Problems

Electric energy

3.1

wWww
oW

i it et e \D 00 =] ON LN
W -0

w w
I —
v &

Introduction

Electric energy of a charged sphencal conductor in free space
The ‘size’ of an electron

Total electric energy of a pair of small charged spherical
conductors

Mechanical action between a pair of small charged spheres
The capacitance matrix for a pair 6f small conducting spheres
The capacitance matrix for any system of conductors
Electric energy of a charged capacitor

Electric energy of a system of charged conductors

The reciprocity theorem of electrostatics

Proof of the reciprocity theorem of electrostatics

Mechanical action on a charged conductor

Calculation of mechanical action using displacements at constant
voltage

Conductors in the presence of linear dielectric material

The conductance and resistance matrices

Problems

Energy and stress in electric fields

4.1
4.2

BBS S S AD S
e = O 0NN AW

W -0

Introduction

Distribution of potential energy between statically charged
conductors in free space

Distribution of potential energy in any electric field in free space
Maximum size for quasi-static behaviour

Tension in tubes of electric flux in electrostatics

Sideways pressure of tubes of electric flux in electrostatics
The electric stress tensor in free space

Distribution of potential energy in linear dielectric material
Electric stress in linear dielectric material

Non-electrical stress in material

Non-linear dielectric material

Density of power dissipation in conducting materials
Density of power generation in an electromagnetic field
Problems

Motional energy in an electromagnetic field in free space

5.1

SHRNN
S W

wh b
~N N

Introduction

The concept of motional energy associated with moving charge

Motional energy involving both mass and charge

Magnetic energy of any stationary tube of magnetic flux in free
space

Distribution of magnetic energy in a magnetic field in free space
Magnetic energy of an inductor

Quasi-static treatment of magnetic energy

120

127

135



Contents vii

5.8 Magnetic energy of a system of inductors carrying steady electric

currents 136
5.9 The reciprocity theorem of magnetostatics 137
5.10 Calculation of forces of magnetic origin from changes in

magnetic energy 138
5.11 The magnetic stress tensor in free space 140

Problems 142
Magnetic energy and magnetic stress in magnetic materials 145
6.1 Introduction 145
6.2 Faraday’s law of induction in the presence of material 145
6.3 An electromagnet 147
6.4 Work done on a linear isotropic electromagnet by a generator

in the winding 149
6.5 A model of a diamagnetic material 150
6.6. Electron spin 156
6.7 A model of magnetic material whose properties depend on

electron spin g 157
6.8 Definition of magnetic energy 159
6.9 Inductors in the presence of linear magnetic material 1617
6.10 Magnetic stress in the presence of linear magnetic materials 162
6.11 Non-linear ferromagnetic material 165
6.12 The concept of magnetopotential energy 169

Problems 171
Flow of energy in an electromagnetic field 175
7.1 Introduction 175
1.2 A simple electromagnetic oscillatory system 175
73 A simple electromagnetic transmission system 180
7.4 The concept of the Poynting vector 185
7.5 The physical significance of the Poynting vector 187
Conservation of energy and momentum in electromagnetic fields 193
8.1 Introduction 193
8.2 Poynting’s energy theorem for electromagnetic fields in free space 193
8.3 Proof of Poynting’s theorem for electromagnetic fields in free

space 195
8.4 The electromagnetic energy budget in the presence of linear

materials 196
8.5 Electromagnetic work done in non-linear dielectric and magnetic

materials 197
8.6 The energy budget in a plasma ' 197
8.7 Use of free electric moment per unit volume 199
8.8 The concept of electromagnetic momentum per unit volume 201
8.9 The momentum theorem for electromagnetic fields 205

Problems 206
Energy in oscillatory electric circuits 209
9.1 Introduction 209
9.2 The concepts of resistive and reactive power 212
9.3 The importance of reactive power 217
9.4 The concept of complex power 220



viii Contents

9.5 Use of root-mean-square voltages and currents 222
9.6 The concept of impedance 223
9.7 Electric network theory 226
10 Energy storage in oscillatory electromagnetic fields 227
10.1 Introduction . 227
10.2 Two- and three-dimensional vector algebra 227
10.3 The concept of elliptical polarisation 228
10.4 The time-variation of energy density in oscillatory
electromagnetic fields 232
10.5 Mean energy density expressed in terms of the complex field
vectors 234
11 Energy flow in oscillatory electromagnetic fields 237
11.1 Introduction 237
11.2 The time-variation of the rate of energy supply and consumption
per unit volume in oscillatory electromagnetic fields 237
11.3 Complex power per unit volume 241
11.4 The time-variation of the energy flow per unit cross-sectional
area per unit time in oscillatory electromagnetic fields 243
11.5 Complex power unit cross-sectional area 245
11.6 The energy theorem for complex power 246
11.7 Complex power in a plasma” 248
11.8 The reciprocity theorem for oscillatory electromagnetic fields 250
11.9 Proof of the reciprocity theorem for oscillatory electromagnetic
fields 253
12 The concept of impedance in oscillatory electromagnetic fields 256
12.1 Introduction 256
12.2 Definition of field impedance 257
12.3  The relation between circuit impedance and boundary conditions
at an interface between oscillatory electric networks 260
12.4 The relation between field impedance and boundary conditions
at an interface between oscillatory electromagnetic fields 262
12.5 Field impedance for a plane wave 264
12.6 The relation between field impedance and field admittance 269
12.7 Impedances and admittances in a strip transmission line 271
12.8 Dielectric loss 273
12,9 Metal loss 275
Problems 277
13 Reflection and refraction of electromagnetic waves at a plane interface 279
13.1 = Introduction 279
13.2 The exponential wave-function 279
13.3 The concept of a dispersion relation 282
13.4 Evanescent waves 285
13.5 The incident, reflected and transmitted waves associated with a
plane interface 286
13.6 The relation between the propagation vectors for the incident,
reflected and transmitted waves 289

13.7 The field impedances of the waves looking normally across the
interface - 290



13.8

13.9

13.10
13.11
13.12

Contents

Reflection and transmission of a plane wave incidence normally
on a plane interface

Calculation of the Fresnel reflection coefficients

Behaviour of the Fresnel reflection coefficients

Matching at oblique incidence

The concept of coherent scattering

Problems

14 Storage and flow of energy in electromagnetic waves

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Introduction

Travelling plane wave in linear isotropic loss-free material
Standing plane wave in linear isotropic loss-free material
Travelling and standing waves on a loss-free transmission line
Partially travelling, partially standing waves

The effect of stored kinetic energy on electromagnetic waves
Energy storage and flow in crossing plane waves

Energy storage and flow for a radiating dipole

Problems

Appendix A Orthogonal co-ordinate systems

Appendix B Vector identities

Appendix C Relativistic mechanics

Appendix D Numerical values

Index

ix

291
295
299
303
308
309

313
313
314
317
318
321
324
331
336
346

348
349
350
353

354



Chapter 1

Electromagnetic fields in free space

1.1 Introduction

Before we can study energy in electromagnetism, it is necessary to understand
electromagnetic fields. In this chapter, we shall summarise the facts concerning the
electromagnetic fields created by known time-varying distributions of electric
charge and current in otherwise free space.

Material consists of an aggregate of particles in space many of which are charged
and are in motion. Such a distribution of moving charged particles constitutes elec-
tric charge and current in space. However, the electric charge and current densities
in a material near a point O depend on the electromagnetic field in the neighbour-
hood of 0, that is, on the very electromagnetic field that we seek to calculate. This
causes a complication that we shall not address until the following chapter.

Generally, we shall suppose in this chapter that the distributions of electric
charge and current exist in otherwise free space, and that they are known functions
of position and time. The problem is to calculate the electromagnetic field that
they create. However, it will sometimes be instructive to regard the electromagnetic
field as known in space and time, and to enquire what distributions of electric
charge and current are needed to create it.

1.2 Force in an electromagnetic field

The exercise of force in an electromagnetic field is described by means of the elec-
tric field and the field of magnetic flux density. At a point in an electromagnetic
field where the electric vector is £ and the magnetic-flux-density vector is B, the
force per unit charge that would act on a test charge at the point is

E+vxB (1.1)

where v is the velocity of the test charge relative to the observer. Different obser-
vers in motion relative to each other observe different values of v, but they also
observe different values of E and B. When all observers have evaluated E +v x B
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they are in agreement with each other on the force exerted. This agreement consti-
tutes equality when the velocities are small compared with the velocity ¢ of light in
free space.

The fields described by the electric vector £ and the magnetic-flux-density
vector B are related by Faraday’s law of induction. If ds is a vector element of
length of any closed curve C in any electromagnetic field, and if E is the electric
vector at ds, then (see Fig. 1.1)

fc E-ds (1.2)

is the circulation of £ round C in the direction of ds. If S is a surface spanning C
and dS is a vector element of area of S at a point where the magnetic-flux-density
vector is B, then )

| B-ds (13)
S

is the magnetic flux crossing S in the direction of dS. In terms of these concepts,
Faraday’s law of induction states that, for any closed curve C fixed relative to the
observer and spanned by a surface S,

fc Eedy = —% fsB-ds (1.4)

where t denotes time. Faraday’s law of induction expresses the fact that the circula-
tion of the electric vector round any fixed closed curve C in any electromagnetic
field is equal to the time-rate of decrease of the magnetic flux crossing a surface S
spanning C. The law implies the adoption of a sign convention, and we employ the
right-hand-screw rule. We regard the vector product in expr. 1.1 as defined with the
aid of the right-hand-screw rule, and we also regard the direction of the vector
element of area dS of S in Fig. 1.1 as related by the right-hand-screw rule to the
direction of the vector element of length ds of the rim C.

45

G o)

E

Fig. 1.1 /llustrating calculation of the circulation of the electric vector round a closed curve
C and calculation of the magnetic flux crossing a spanning surface S

Eqn. 1.4 applies in particular to the rim of every fixed element of area d§ in
space, no matter what its location or what its orientation. The curl of a vector
field E (see Appendix A) is a derived vector field such that, for any vector element
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of area dS at a location where the derived vector field is curl £, the right-hand
related circulation of E round the rim of dS is (curl £)-dS. Hence, by definition of
curl, eqn. 1.4 implies that, at all locations at all times,

3B
ot
This is Maxwell’s electric curl equation. It is a relation between the two vector
fields (E,B) involved in describing how force is exerted in an electromagnetic field.

It is true in every electromagnetic field at every point of space where the derivatives
involved in the equation exist.

cutlfE = —

(1.5)

No E field
Boundary Rectangular
of E field closed curve
(a) \ r<—(
=
v
n
E field
Surface of E
discontinuity : R?Cturdlgulnr
in E field closed curve
(b) Vet
=1

Fig. 1.2 Jllustrating vanishing of the surface curl of E
a At a fixed boundary of an E field
b At a fixed surface of discontinuity in an E field
Note that the rectangular loop, the vector E, and the vector E, are not in general
coplanar

At a boundary of an E field, the space derivatives of £ involved in eqn. 1.5 do
not in general exist. However, at a boundary fixed relative to the observer, we can
apply the integral version of eqn. 1.5, given in eqn. 1.4, to the perimeter of a nar-
row rectangular element of area for which the long edges are on opposite sides of
the boundary (see Fig.1.2a). As the length of the narrow edges of the rectangle
tends to zero, the contribution from the right-hand side of eqn. 1.4 also tends to
zero. Moreover, the circulation of E round the rim of the rectangle reduces to the
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the product of one of the long edges and the component of E along it. Since all
orientations of this edge in the boundary are possible, we deduce that the tangential
component of E must always vanish at a fixed boundary of an electric field. This
may be expressed by saying that, if # is a unit normal to the boundary directed into
the field at a point where the adjacent electric vector is E, then (see Fig. 1.2a)

nxE =0 (1.6)

The boundary of an electric field is a special case of a surface of discontinuity. At
any fixed surface of discontinuity of the E field we may apply eqn. 1.4 to the peri-
meter of a narrow rectangular element of area for which the long edges are on
opposite sides of the surface (see Fig. 1.2b). We deduce that there is no discontinu-
ity in the tangential component of E even though there is a discontinuity in the
normal component. This may be expressed by saying that, if 7 is a unit normal to a
fixed surface of discontinuity at a point where E | is the discontinuous increase in £
experienced on crossing the surface in the direction of n, then

nxE| =0 (1.7)

Eqn. 1.6 is what eqn. 1.7 becomes when E vanishes on one side of the surface of
discontinuity. For moving surfaces of discontinuity, see Table 2.4..

The expression n x E appearing in eqn. 1.6 is (c.f. Vx E) the surface curl of E at
the boundary of the field. Likewise, the expression n x E| appearing in eqn. 1.7 is
the surface curl of £ at any surface of discontinuity. We may say that the counter-
part of Maxwell’s electric curl equation (1.5) at a fixed boundary of an E field, or
at any fixed surface of discontinuity in an £ field, is expressed by the vanishing of
the surface curl of E.

1.3 The vector field of magnetic flux density B

The vector field B may be described by means of curves, or lines, of magnetic flux
such that, at each point P of the field, B is directed along the line through P. The
aggregate of lines of magnetic flux drawn through a specified closed curve consti-
tutes a tube of magnetic flux. The entire magnetic field may by analysed into thin
tubes of magnetic flux.

A thin tube of magnetic flux has the property that, if dS is the vector area of a
cross-section of the tube (not necessarily a normal cross-section) at a point where
the magnetic-flux-density vector is B then, at each instant of time, the quantity

B-dS (1.8)

has the same value for all locations along the tube and for all cross-sections of the
tube. The quantity (1.8) is known as the strength of the tube. Tubes of magnetic
flux have the property that they have no beginning and no end. They frequently
take the form of closed tubes. Tubes of magnetic flux.are therefore endless tubes of

.. constant strength.
Let dS be a vector element of area of an unclosed surface S, and let B be the
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magnetic-flux-density vector at dS at time 7. Then, in accordance with expr. 1.8,
the tube of magnetic flux formed by lines of magnetic flux through the rim of d§
at time ¢ has strength B-dS, and the sum of the strengths of the tubes crossing S at
time 7 is

fs B-dS. (1.9)

This is the magnetic flux crossing S at time 7 in the direction defined by d§s.

If C is the rim of the surface S, the integral (1.9) is also described as the mag-
netic flux threading C at time 7. Because B+dS does not vary along a tube of mag-
netic flux, the sum of the strengths of the tubes threading a closed curve C may be
calculated from expr. 1.9 using any surface S spanning C. The magnetic flux thread-
ing a closed curve C is independent of the spanning surface S used in the calcula-
tion. This property of the B field is relevant to Faraday’s law of induction. The
value of the surface integral on the right-hand side of eqn. 1.4 is independent of the
surface S used to span the closed curve C round which the circulation of E is
evaluated.

The fact that each thin tube of magnetic flux not only has the same value of
B-dS at all points, but is also endless, has the following consequence. For any sur-
face T enclosing a volume ¥ in space, each tube that conveys magnetic flux into V
across Z also conveys the same amount of flux across £ out of V (see Fig. 1.3).
Hence, for any closed surface Z in any electromagnetic field,

J, Bras=o (1.10)

Closed surface I

Tube of magnetic flux

Fig. 1.3 /llustrating the vanishing of the magnetic flux out of a closed surface ¥

Eqn. 1.10 applies in particular to the surfaces of every element of volume in space.
The divergence of a vector field B (see Appendix A) is a derived scalar field such
that, for any element of volume dr at a location where the derived scalar field is
divB, the flux of B out of the element of volume is (div B)dr. Hence, by definition
of divergence, eqn. 1.10 implies that, at all locations at all times,

divB = 0 (1.11)



