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Preface

The rapidly growing field of quantum electronics can be divided roughly
into two broad categories. The first is concerned chiefly with the atomic
aspects of the problem. These include the study of energy levels, lifetimes,
and transition rates in laser media, and also the mechanisms and the
physical origins of phenomena such as Raman and Rayleigh scattering
and second-harmonic generation. This branch of the field leans heavily on
the formalism of quantum mechanics and has consequently become the
domain of the physicist and, to a lesser extent, the physical chemist.

The second category deals with the coherent interactions of optical radia-
tion fields with various atomic media. Here we tend to accept the existence
of certain physical phenomena and concern ourselves with their implica-
tions and applications. The physical properties may now be represented by
parameters characteristic of the material. Two typical examples are: (1) the
analysis of power output and frequency pulling in laser oscillators in which
the physical phenomena of spontaneous emission and atomic dispersion
are important, and (2) the problem of optical second-harmonic generation
and phase matching in which the complicated quantum mechanical con-
siderations involved in understanding the optical nonlinearity are lumped
into the nonlinear constant.

iii



iv  PREFACE

This second aspect of quantum electronics is more closely linked to ap-
plications and has consequently attracted the attention of the applied
physicist and the electrical engineer. In this area, a good deal of the em-
phasis is on optics rather than on quantum physics and many of the con-
cepts encountered here have their counterparts in radio and microwave
electronics. For this reason I have decided to refer to the subject matter
as optical electronics and to choose the same name for the book’s title.

Since the appearance of the first edition, a number of topics have become
important. These topics have been incorporated into this new edition and
involve the following:

Expanded treatment of Gaussian beam propagation in homoge-
neous and in focusing media

Unstable optical resonators

Heterojunction injection lasers

High pressure CO, lasers

Noise and detection error probability in binary communication
channels

Mode locking in homogeneously broadened laser systems
Propagation in symmetric and asymmetric dielectric waveguides
Mode coupling and directional coupling in dielectric waveguides
Distributed feedback lasers

Although the first edition was aimed at students in the senior year or
in the first year of graduate studies, it was used mostly by graduate stu-
dents. To encourage this trend, I have augmented the level of mathe-
matical sophistication used in some of the discussions. Nevertheless, 1
still belicve that the ever-increasing role of coherent optics in science and
technology will require an early exposure to this area on the part of most
electrical engineering and applied physics students. With this in mind,
I have undertaken to present the material without the use of quantum
mechanics. Instead of inventing quasi-classical substitutes for quantum
mechanical coneepts, I decided to ask the student to accept on faith certain
statements whose justification can only be provided by quantum mechanics.
Somewhat to my own surprise, I found that this was necessary only when
introducing the concepts of stimulated and spontaneous transitions. The
rest of the material can then be treated using classical formalism. An
introductory knowledge of atomic physics and of electromagnetic theory
would be helpful, although the basic results are derived in the text.

I am grateful to Di.. 7. Ganiel, R. MacAnally, and S. Kurtin for
critical comments and suggestions and to Ruth Stratton and Dian Rapchak
for their patient and competent typing of the manusecript.

Pasadena, California AMNON YARIV
June, 1976
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CHAPTER

1

Electromagnetic Theory

1.0 Introduction

In this chapter we derive some of the basic results concerning the propaga-
tion of plane, single-frequency, electromagnetic waves in homogeneous
isotropic media, as well as in anisotropic crystal media. Starting with
Maxwell’s equations we obtain expressions for the dissipation, storage,
and transport of energy resulting from the propagation of waves in material
media. We consider in some detail the phenomenon of birefringence, in
which the phase velocity of a plane wave in a crystal depends on its
direction of polarization. The two allowed modes of propagation in uni-
axial crystals—the “ordinary” and “extraordinary” rays—are discussed
using the formalism of the index ellipsoid.

1.1 Complex-Function Formalism

In problems that involve sinusoidally varying time functions we can save
a great deal of manipulation and space by using the complex function
formalism. As an example consider the function

a(t) = |A] cos (wt + ¢a) (1.1-1)
1



2  ELECTROMAGNETIC THEORY

where o is the circular (radian) frequency' and ¢, is the phase. Defining
the complex amplitude of a(f) by

A = |Ales (1.1-2)
we can rewrite (1.1-1) as
a(t) = Re [Ae™!] (1.1-3)
We will often represent a(t) by
a(t) = Ae™ (1.1-9)

instead of by (1.1-1) or (1.1-3). This of course is not strictly correct so that
when this happens it is always understood that what is meant by (1.1-4)
is the real part of A exp (wt). In most situations the replacement of
(1.1-3) by the complex form (1.1-4) poses no problems. The exceptions
are cases that involve the product (or powers) of sinusoidal functions.
In these cases we must use the real form of the function (1.1-3). To illus-
trate the case where the distinction between the real and complex form is
not necessary, consider the problem of taking the derivative of a(t).
Using (1.1-1) we obtain

g%%) - %“Al cos (wt + o)l = —w|A|sin (@t + ¢a)  (1.15)

If we use instead the complex form (1.1-4), we get
da(t) _ d ,, wt _ et
& Blan" (Ae'") = 1wAe

Taking, as agreed, the real part of the last expression and using (1.1-2),
we obtain (1.1-5).

As an example of a case in which we have to use the real form of the
function, consider the product of two sinusoidal functions a(f) and b(),
where

a(t) = |A| cos (wt + ¢a)
30 I_Aél_ [(Fe+oe) 4 gmitetda (1.1-6)

= Re[4e™]
and

b(t) = |B| cos (wt + ¢»)
_ 1Bl [ iwtsen 4 —itwtten (1.1-.7)
7t e hhe ¥

= Re [Be™|

1 The radian frequency w is to be distinguished from the real frequency » = w/2x.



CONSIDERATIONS OF ENERGY AND POWER IN ELECTROMAGNETIC FIELDS 3

with A = |A| exp (i¢s) and B = |B| exp (¢¢3). Using the real functions,
we get

a(Ob(t) = IAI Bl

—%— [cos (2wt + o + ¢b) + cos (¢a — ¢5)] (1.1-8)

Were we to evaluate the product a(f)b(f) using the complex form of the
functions, we would get

a(t)b(t) = ABe'?“t = |A| |B|e!®@ttoater (1.1:9)

Comparing the last result to (1.1-8) shows that the time-independent (dc)
term 3|A| |B| cos (pa — ¢») is missing, and thus the use of the complex .
form led to an error.

Time-averaging of sinusoidal products.? Another problem often encoun-
tered is that of finding the time average of the product of two sinusoidal
functions of the same frequency

r
a(t)b(t) = % /o |A| cos (wt + ¢4)|B| cos (wt + ¢p) ¢ (1.1-10)

where a(t) and b(f) are given by (1.1-6) and (1.1-7) and the horizontal bar
denotes time-averaging. T = 2r/w is the period of the oscillation. Since
the integrand in (1.1-10) is periodic in T, the averaging can be performed
over a time 7. Using (1.1-8) we obtain directly

IAI |B]

a(®)b(t) = cos (¢a — ®b) (1.1-11)

This last result can be written in terms of the complex amplitudes A and
B, defined immediately following (1.1-7), as

a()b(t) = % Re (AB*) (1.1-12)
This important result will find frequent use throughout the book.

1.2 Considerations of Energy and Power in
Electromagnetic Fields

In this section we derive the formal expressions for the power transport,
power dissipation, and energy storage that accompany the propagation
of electromagnetic radiation in material media. The starting point is

2 The problem of the time average of two nearly sinusoidal functions is considered in
Problems 1.1 and 1.2.



4 ELECTROMAGNETIC THEORY

Maxwell’s equations (in MKS units)

.  od
Vxh=i+> (1.2-1)
_ _9
VXe=—7 (1.2-2)

and the constitutive equations relating the polarization of the medium to
the displacement vectors

d=ee +p (1.2-3)
b = po(h + m) (1.2-4)

where i is the current density (amperes per square meter); e(r,t) and
h(r, t) are the electric and magnetic field vectors, respectively; d(r, {) and
b(r,?) are the electric and magnetic displacement vectors; p(r,?) and
m(r, t) are the electric and magnetic polarizations (dipole moment per unit
volume) of the medium; and ¢, and po are the electric and magnetic
permeabilities of vacuum, respectively. We adopt the convention of using
lowercase letters to denote the time-varying functions, reserving capital
letters for the amplitudes of the sinusoidal time functions. For a detailed
discussion of Maxwell’s equations, the reader is referred to any standard
text on electromagnetic theory such as, for example, Reference [1].
Using (1.2-3) and (1.2-4) in (1.2-1) and (1.2-2) leads to

VXh=i+4 % (€0e + P) (1.2-5)

VXe=—g—tno(h+m) (1.2-6)

Taking the scalar (dot) product of (1.2-5) and e gives

: & oy e & fKx .op ;
e-VXh=e-i+ 3 at(e e) +e 3 (1.2-7)
where we used the relation
1. de
Ea(e-e)—e-a

Next we take the scalar product of (1.2-6) and h:
h-vxXxe=—22—(h-h) — poh- — (1.2-8)

Subtracting (1.2-8) from (1.2-7) and using the vector identity

V- AXB)=B-VXA—A-VXB (1.2:9)
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results in
€

V. et O (e, o1 Hop.
V-(exXh) =e l+at(2e e+2h h)

ap Jm
+ e Koh al

ol
We integrate the last equation over an arbitrary volume V and use the

Gauss theorem [1]
/ (V-A)dv = / A-nda
v s

where A is any vector function, n is the unit vector normal to the surface
S enclosing V, and dv and da are the differential volume and surface
elements, respectively. The result is

(1.2-10)

—/ V-(exh)dv=—/ (exh) -nda
v s

_ 49 (Co,. 9 (Hay. .op ,om
‘/V[e '+at(2° e>+az(2h ">+e 5t T Hob at]d”

(1.2-11)

According to the conventional interpretation of electromagnetic theory,
the left side of (1.2-11), that is,

—/ (exh)-nda
s

gives the total power flowing info the volume bounded by S. The first
term on the right side is the power expended by the field on the moving
charges, the sum of the second and third terms corresponds to the rate of
increase of the vacuum electromagnetic stored energy 8., where

Evac = / [ﬁe- e+ E—gh-h] dv (1.2-12)
v0L2 2
Of special interest in this book is the next-to-last term
ap
Y,

which represents the power per unit volume expended by the field on the
electric dipoles. This power goes into an increase in the potential energy
stored by the dipoles as well as into supplying the dissipation that may
accompany the change in p. We will return to it again in Chapter 5, where
we treat the interaction of radiation and atomic systems.

Dipolar dissipation in harmonic fields. According to the discussion in
the preceding paragraph, the average power per unit volume expended by
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the field on the medium electric polarization is

Power e.oP
Volume ~ =~ ¢

(1.2-13)

where the horizontal bar denotes time-averaging. Let us assume for the
sake of simplicity that e(Z) and p(f) are parallel to each other and take
their sinusoidally varying magnitudes as

e(., = Re [Ee™'] (1.2-19)
p(t) = Re [Pe™'] (1.2-15)

where E and P are the complex amplitudes. The electric susceptibility x,
is defined by
P = eX.E (1.2-16)

and is thus a complex number. Substituting (1.2-14) and (1.2-15) in
(1.2-13) and using (1.2-16) gives

Power
Volume

= Re [Eeivt] Re [twPei«!]

= 1 Re [iweoX EE*] (1.2-17)

= geom’ Re (iX,)

where in going from the first to the second equality we used (1.1-12).

Since X, is complex we can write it in terms of its real and imaginary parts as
Xe = X — Xl (1.2-18)

which, when used in (1.2-17), gives

Power _ wepXxy
Volume 2

|E[? (1.2-19)

which is the desired result.
We leave it as an exercise (Problem 1-3) to show that in anisotropic
media in which the complex field components are related by

P; = € X Xi;E; (1.2-20)
j

the application of (1.2-13) yields

Power @
=Ze Re (ix;;EIE;) (1.2-21)
Volume 2 °° g (X, B E;
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1.3 Wave Propagation in Isotropic Media

Here we consider the propagation of electromagnetic plane waves in
homogeneous and isotropic media so that ¢ and u are scalar constants.
Vacuum is, of course, the best example of such a “medium.” Liquids and
glasses are material media that, to a first approximation, can be treated
as homogeneous and isotropic.® We choose the direction of propagation
as z and, taking-the plane wave to be uniform in the z-y plane, put 4/dz =
/8y = 0 in (1.2-1) and (1.2-2). Assuming a lossless (¢ = 0) medium,
(1.2-1) and (1.2-2) become

VXe= —u%‘z‘ (13-1)
vxh=e (13-2)
% = ,‘%’% (1.33)
% = % (1.3-4)
% — —n‘i,—';” (13.5)
%"72 _ e%%ﬂ (1.3-6)
0= ‘% (13-7)
0= (13-8)

From (1.3-7) and (1.3-8) it follows that %, and e, are both zero; therefore,
a uniform plane wave in a homogeneous isotropic medium can have no
longitudinal field components. We can obtain ,a self-consistent set of
equations from (1.3-3) through (1.3-8) by taking e, and k. (or e; and k,)
to be zero.* In this case the last set of equations reduces to Equations
(1.3-4) and (1.3-5). Taking the derivative of (1.3-5) with respect to z and

3 The individual molecules making up the liquid or glass are, of course, anisotropic.
This anisotropy, however, is averaged out because of the very large number of mole-
cules with random orientations present inside a volume ~\3.

4 More fundamentally it can be easily shown from (1.3-1) and (1.3-2) (see Problem 1.4)
that, for uniform plane harmonic waves, € and h are normal to each other as well as to
the direction of propagation. Thus, x and y can simply, be chosen to coincide with
the directions of e and h.



