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General Introduction

Any type of construction must ensure, from its inception, certain safety
conditions for its users. This primarily occurs due to the mechanical
performance of the structure which must be designed to account for cost
optimization. Therefore. man has, over time, built structural codes based on
the advancement of knowledge in the mechanical behavior of component
materials of structures. These codes were designed to ensure safe behavior of
the structure under mechanical stresses of its environment: supporting its
own weight, excessive misuse and extreme climates (mainly snow and
wind), while optimizing the cost of the structure. These codes have evolved
to incorporate, in a modulated way. the hazards of accidental mechanical
stresses such as seismic activity. Thus, we have seen established in these
codes criteria dealing with the geophysical knowledge determining the
geographical zoning of seismic activity.

The evolution of the landscape sector in construction over the past few
decades can be schematically described in the following way:

— The advancement of knowledge in the mechanical behavior of materials
coupled with the design of increasingly reliable building materials has
allowed us to initiate more important construction projects with more
gigantic structures, requiring increasingly important production costs.

—The continual aging of building heritage generates increasingly
important maintenance and repair requirements.

Introduction written by Abdelkarim AIT-MOKHTAR.
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— The extension of entropic areas leads inexorably to saturation and to the
occupation of other areas which are climatically less secure: flooding and/or
submersible zones, for example. Added to this is climate change which
currently tends to emphasize the hazards and make extreme conditions more
frequent (rainfall. storms. hurricanes, cyclones. etc.).

— The increase in the globalized competition in economic and financial
management continually tends to improve the optimization of project costs.

All these elements lead to a main requirement in the construction sector:
the resistance over time. i.e. the durability of structures, including
environmental stresses. This requirement is gradually being integrated into
the specifications of international design codes.

Coastline buildings are among the most exposed to these environmental
burdens and hazards. They simultaneously bring together two types of
continuous attacks: (1) physical and chemical attacks such as chlorides and
sulfates present in the seawater and (2) mechanical attacks of waves in
coastal zones, particularly on protection structures such as dikes. Recent
events (2010) that took place on the French Atlantic coast (Cyclone Xynthia)
have testified to their violence, which, though temporary, generated
substantial damage and casualties.

Thus, issues of material and structure durability and that of environmental
hazards were echoed from the research community worldwide, with
academic research prevalent in different national, European and international
programs. The literature is becoming more abundant on the various aspects
involved in these phenomena: from fundamental approaches in fluid
mechanics and transport in porous media at microscopic scales up to
applications in structural calculations on degraded structures, with
monitoring concepts of residual performances and performance thresholds
according to repair actions.

Far from being exhaustive, this book aims to provide a summary through
the presentation of examples of scientific approaches on research topics
related to the physical, chemical and mechanical processes involved in the
mechanisms of degradation or destruction of structures located in coastal
zones. This book is organized into six chapters:
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Chapter 1 is devoted to the description of microstructure materials widely
used in built structures and the techniques of its investigation at the
laboratory scale. For this purpose, a presentation of the different tools used is
addressed. Then. different methodologies of the literature are given. They
allow us to numerically build the microstructure of a porous medium and
determine its associated transfer properties.

Chapter 2 focuses on heat and moisture transport since water is the
vehicle of the transfer of aggressive agents from the atmosphere to porous
materials by diffusion and advection. In unsaturated cases, wetting/drying
cycles of the material also induce heat transfers. All these aspects are
presented with some applications on concrete materials.

Chapter 3 deals with chloride transfer, mainly in saturated media. Given
the well-known heterogeneity of porous building materials, the
homogenization techniques used in the literature on porous media are
discussed first. Then, the periodic homogenization technique has been
chosen for its application to the case of chloride ion transfers in saturated
materials. The electro-capillary phenomena involved in this kind of ionic
transfer are integrated and parametric studies are supplied.

Chapter 4 studies chloride transfer through unsaturated materials by
integrating advection phenomena in addition to electro-capillary phenomena
mentioned above. In this chapter, the volume averaging technique is used to
establish the macroscopic equations governing ionic transport coupled to
liquid water transport leading to the obtainment of water and chloride
profiles through the material submitted to a marine environment.

Chapter 5 focuses on the action of the second aggressive agent, i.e.
sulfates present in seawater. The degradation mechanism is different from
that of chlorides since sulfates act by modification of the hydrates formed in
concrete. They induce some crystallized phases that are expansive. Also,
they induce strengths that give rise to cracks in the materials. These cracks
weaken the material and make it more permeable to any other agents, such
as chlorides themselves. This leads to the facilitation of corrosion processes
in reinforced concrete.

Chapter 6 deals with monitoring of structures. It expands the scale of the
study to encompass the structure or the building and focus on the monitoring
of the structure’s performances according to its degradation state. According
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to safety conditions, it also aims to define a critical state of degradation
depending on loading conditions and stresses coupled with a probabilistic
approach, including the uncertainties on these parameters.

In order to be complete regarding structures in marine environment,
Chapter 7 deals with a different kind of structures. This concerns protection
systems against marine floods such as dikes or earth-fills. This chapter
describes mechanism and mode degradation of these kinds of structures.
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Porous Construction Materials:
Characterizations and Modeling

This chapter presents experimental methods and some modeling of
microstructural properties of porous media, mainly applied to construction
materials. The methods shown are generally recommended by some
specialized users or by standards. Some models shown are based on the
microstructural properties of the medium, while others describe simulated
microstructures built numerically based on experimental data, such as
porosity, tortuosity and connectivity, and on the hydration process in the
particular case of cementitious materials.

In the final section of the chapter, the microstructural properties of a
porous medium are linked to a transfer property, namely intrinsic
permeability. For this purpose. several approaches are presented: calculation
of the permeability from data on the pore structure (e.g. distribution of pore
radii) and calculation from 3D constructed microstructures.

1.1. Definition of porous media

A porous medium is composed of a rigid solid matrix, or with low
deformation, and of a void network. The porosity. denoted as &, in the

Chapter written by Abdelkarim AIT-MOKHTAR. Ameur HAMAML Philippe TURCRY and
Ouali AMIRI.
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following, is expressed by the ratio of the void phase volume and the total
volume of the medium (equation [1.1]):

s [1.1]

total

&y

The pores (Figure 1.1) can be connected and cross the medium from side
to side. In this case, the pore structure is known as “percolating™. Trapped
gaps or blind pores can also be found within the medium.

Figure 1.1. Porosity: (U Percolation/connected porosity,
@) Trapped gap, 3 Blind pore

A lot of construction materials are porous. The pore structure, i.e.
porosity and pore size and shape, depends, of course, on the type of the
material. The porosity of construction materials is the place where transfer
phenomena occur. These phenomena are affected by microstructural
parameters, such as pore size distribution or connectivity. Generally
speaking, it is necessary to consider all these parameters in order to study the
transfer properties. For instance, the most porous material is not necessarily
the most permeable material: pore size also affects the transfer by
permeation.

From this point of view, two relevant microstructural parameters are
usually used to characterize the pore structure: tortuosity and constrictivity.
The tortuosity (t) quantifies the elongation of the transfer path due to pore
geometry, as shown in Figure 1.2(a).
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Usually, tortuosity (equation [1.2]) is calculated as the ratio of the
average pore length and the sample thickness. The tortuosity models the
average transfer path through the material:

s [.2]

Constrictions

TR

a) b)

Figure 1.2, Microstructural parameters: a) tortuosity and b) constrictivity

The constrictivity (8) (Figure 1.2(b)) consists of a reduction of the pore
size along the pore. It reflects the fact that the pore section is not uniform but
undergoes several constrictions that affect the transfer phenomena.

1.2. Different experimental tools for the characterization of porous
materials

The transfer of chemical species in a porous medium is closely related to
the porous microstructure [OLL 92]. Thus, its characterization is required to
study the structure’s durability. The knowledge of parameters such as
porosity or pore-specific areas is necessary for the investigation of the
physicochemical phenomena involved during mass exchanges between the
wall of the pore and the pore solution interface inside the medium, which
governs boundary conditions in the study of mass transfer.

1.2.1. Measurements of porosity

The main direct methods of porosity measurements in construction
materials are water porosimetry and mercury intrusion porosimetry (MIP).
These two methods are described hereafter. In the case of cementitious
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materials, recommended protocols exist, particularly in France [AFP 97,
ARL 07].

1.2.1.1. Water porosimetry

Generally, the water porosimetry test is carried out according to the
procedure recommended by the French association AFREM (Association
Frangaise de Recherche et d’Essais sur les Matériaux et les Constructions,
French Association for the Research and Testing of Materials and
Structures) [AFP 97] and the standard NF P18-459 [AFN 10]. The samples
are first water-saturated with distilled water under vacuum at a saturation
vapor pressure of 18 mmHg in order to obtain the saturated mass ms,. The
sample volumes V,, are then determined from buoyancy weighing. Finally,
samples are dried at a temperature between 60 and 105°C until mass
stabilization to obtain the dried mass my,. The mass stabilization is obtained
when the relative mass loss in 24 h is less than 0.05%. The porosity &, is
calculated using equation [1.3]:

My — My,
g, =———x100 (%) [1.3]

I)
p W 'I/luml

where p, is the density of water.

1.2.1.2. Mercury intrusion porosimetry

The MIP test is carried out by injecting mercury through a porous
medium sample of 1-2 ¢cm’ placed under vacuum in a penetrometer. This
injection is performed by varying the injection pressure P, which can reach
more than 400 MPa, so that the mercury penetrates pores whose diameters D
are between 0.003 and 360 pm. Each pressure increment permits the
calculation of the diameter of the pores filled with a volume of mercury ¥,
according to the Laplace's law (equation [1.4]). The principle of
measurement is schematized in Figure 1.3:

_4ycos@
P

D [1.4]

where y is the surface tension between the pore surface and the mercury
(N/m). This parameter varies with the purity of mercury. The value usually
used is 0.485 N/m. @ is the contact angle in degree between the mercury
meniscus and the pore wall. The usual value for this parameter is 130°.
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v

P Hg B}

Figure 1.3. Schematic view of the MIP principle. For a color version
of the figure, see www.iste.co.uk/ait-mokhtar/coastal.zip

At the end of the test, a pore size distribution of the porous network is
obtained. The latter is given by a plot of the differential log of the mercury
volume intrusion versus the pore diameter. Figure 1.4 gives an example of a
result obtained by this method. The specific area of the material can also be

calculated from the collected data.
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Figure 1.4. Example of pore size distribution obtained by
MIP on a mortar with WC = 0.6 [HAM 09]

The MIP is a measurement technique widely used to characterize a
porous material. It gives a simplified representation of the microstructure of



