J e AP

7
Safety of

r

Eric Quinton

Web Applications

L

Risks, Encryption and Handling

Vulnerabilities with PHP

e

Computer Engineering

Web applications are prime targets for hackers. If a site has poor
security, it is more susceptible to hacking, which could lead to
sensitive information being leaked. Establishing appropriate
security involves first analyzing risk, which consists of an evaluation
of information confidentiality, integrity and availability along with
a potential threat analysis, should security be breached.

An application must be structured correctly and the Model, View,
Controller (MVC) design provides a good example to apply to the
site architecture. This type of protection is based on correctly
configured servers and encryption.

This book clearly explains how to test software security prior to
going online as well as a comprehensive overview of the most
common cyber-attacks and how to protect sites against them using
PHP. Other sections include user information, rights management,
encryption principles and advanced mechanisms to monitor
completed actions.

!

Eric Quinton is a database administrator and responsible for the
security of information systems at the National Research Institute
of Science and technology for Environment and Agriculture in
France.

i

B~

9l17817851482281

[]
;9‘ \ FPResss ‘
www.iste.co.uk

Y ¥
Ty g
i VA Gt
s P B
v L

Eric Quinton

. e o SRR S—— jl T e

Safety of Web Applications

SSTe=
— ==

Series Editor
Jean-Charles Pomerol

Safety of Web Applications

Risks, Encryption and Handling
Vulnerabilities with PHP

Eric Quinton

PReEesSs

First published 2017 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposcs of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Press Ltd Elsevier Ltd

27-37 St George’s Road The Boulevard, Langford Lane
London SW19 4EU Kidlington, Oxford, OX5 1GB
UK UK

www.iste.co.uk www.clsevier.com

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in rescarch methods, professional practices, or medical treatment
may become necessary.

Practitioners and rescarchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

For information on all our publications visit our website at http://store.elsevier.com/

© ISTE Press L‘td 2017
The rights of Eric Quinton to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

Library of Congress Cataloging in Publication Data

A catalog record for this book is available from the Library of Congress
ISBN 978-1-78548-228-1

Safety of Web Applications

Preface

When I first began my career in the 1980s, personal computing was in its
infancy. The first computers had very little internal memory, so files and even
entire booting routines were stored on floppy disks with very low storage
capacity. Graphical interfaces did not yet exist, or in some cases were just
beginning to be introduced. To exchange information with other users, we
used floppy disks, and more powerful computer systems used magnetic tapes.
Mainframe computers were accessed by passive terminals connected together
with dedicated cables (one cable per terminal). These were called serial links.

During the 1990s, as computing power increased, direct wired connections
were gradually replaced by networks, and terminals were replaced by PCs.
Computers then began to start dialoguing with each other internally, within
companies. However, exchanges between different locations were limited,
since communication costs were exorbitant and only very low bandwidths
were possible. Applications were written for specific operating systems,
which were in perfect control of their environments: all monitors had the
same characteristics, as did all computers (PCs).

In the late 1990s, the development of the Internet and the creation of the
first websites open to the general public profoundly changed the lay of the
land. The shift from dedicated applications on specific devices to the more
general form of web applications deeply disrupted approaches to
programming. Now, anyone can connect to any software, access information,
order products, manage their emails, and so on.

xii ~ Safety of Web Applications

In the 2000s, with the proliferation of wireless connections (WiF1 only
really began to become widespread in France in the mid-2000s), the
developer community also began to become aware of the security problems
associated with this new environment. Before then, problems had been
relatively well-isolated, since IT professionals were rare and also because
systems enjoyed perfect control of their technical environments. This does not
mean that security was completely neglected (encryption has always existed),
but rather that, as a general rule, only companies or organizations that handled
sensitive information (banks, military, etc.) paid any special attention to
security. For most companies, the risk of data loss was very often the only
factor taken into consideration, and even then only very loose protective
measures were taken. The identify of users was also typically verified using
unencrypted logins and passwords, since the risk of this information being
intercepted was still relatively low. The available computer equipment was
not yet powerful enough to implement “real-time” encryption anyway.

But individuals, and in some cases organizations, quickly realized the
potential financial and later political advantages that could be obtained by
targeting these web applications: the Internet was no longer static as in its
early days (initially, web pages could not be modified), but had now become
dynamic. Now, users themselves can request specific behavior from the
server, and influence the information that is presented to them.

Web applications thus acquired a new dimension of risk: the information
submitted by the browser needs to be systematically checked. Unanticipated
behavior can occur if the user sends data specially modified with the objective
of causing the server to react differently. This is, for example, the case with
SQL injection, which, without the appropriate security measures, tricks the
server into executing operations that were not planned by the programmer.

Today, web software development requires an extremely varied spectrum of
skills (programming languages such as PHP, HTML for drawing pages, CSS
for stylizing them uniquely, JavaScript and its extensions such as JQuery for
building interactivity, SQL for accessing databases, etc.).

Many programmers learn these languages without necessarily being made
aware of the risks to which they are exposed. Basic training rarely focuses on
these aspects (with the exception of specialized training), or only addresses
some of them, preferring to focus on more rudimentary skills. It is all too

Preface xiii

common to meet newly qualified developers with very little knowledge of how
to secure their software. This is also often true with self-taught students, who
learn to program to meet a specific need, such as setting up a website for an
organization, or who write interfaces to control small databases.

Yet the risks are ever-present: without special protective measures, data can
be corrupted, and the website can be used as a gateway by an attacker seeking
to take control of the company information system, or might be defaced for
politically motivated reasons.

Taking the time to examine the security of an application is therefore
particularly important. The first step of this process is to perform risk
assessment: a banking application is more sensitive than a system for booking
meeting rooms.

The next step is to consider the runtime environment of the program. This
might not be intrinsically safe: if the machines that host the application are
not well protected themselves, any protective measures built into the code
will be essentially useless. Similarly, exchanges between the server and users
must be encrypted to prevent undesirable eavesdropping, or malicious
modifications to the exchanged information performed in real time. Of
course, these considerations begin to exceed the scope of just the program
code, but one should note that encryption mechanisms are widely used by a
large number of routines, in particular for the guarantees that they can provide
for certain types of operation.

Understanding the risks to which the code is exposed is a complex topic,
simply due to the sheer variety of the potential mechanisms by which it could
be attacked. Fortunately, there exist projects such as OWASP that regularly
publish lists of the most common types of attack, each of which can often
be thwarted by a few lines of code. ANSSI, the French National Agency for
Information Systems Security, also regularly publishes advice and risk analysis
methodology in the form of the EBIOS method.

One important aspect of security is managing users and their access rights.
Several different mechanisms can be used to identify users and allow them to
access the information that they need.

Designing an application is a complex task, and the only way to ensure that
security measures are correctly applied everywhere is to structure the code

xiv Safety of Web Applications

accordingly. Organizational methods, such as the MVC model (model, view,
controller), can be used to fulfill these needs, and ensure that the application
operates both reliably and securely.

Finally, testing the developed software with special tools will allow us to
identify the most obvious shortcomings. This is an important step before
beginning production, and provides users with a guarantee that the necessary
precautions have been taken to anticipate risks.

This book presents a large number of examples. Most of them are written
in PHP, which is one of the most common languages for creating web
applications. These examples can of course be adapted to fit other languages.
Often, only a few lines of code is required to patch a vulnerability, and the
algorithm or approach used to tackle the problem is more interesting than the
actual code itself.

Eric QUINTON
February 2017

Contents

Preface .. cccssanasssinsssambaeomuonrisssses xi
Chapter 1. Why Do Web Applications Need to be Secure? .. |
1.1. What is a web application? 1
1.1.1. The Internet, a global network 1
1.1.2. Programs beforetheweb 2
1.1.3. Web technology is gradually adopted by applications . 3
1.1.4. Exchangeisbasedontrust 4
1.1.5. Bad idea: trusting that the intranet is automatically
BEOUIE s wommemamans 3 36 b 7R BB EamEa B Ers s s &8 6
1.2. What is computer seCurity? . : « « ¢ s s wwwwwmmw s s 4 ¥ s » 6
1.2.1. Security relies on many differentblocks 7
1.2.2. Not all applications are equal in terms of security needs .. 9
1.3. Examples of damage caused by security failures 10
1.3.1. Do not take anything for granted 13
1.3.2. Well-structured applications are easier to secure 14
1.3.3. The only type of security that matters is global security . . . 15
1.3.4. What security measures are required by applications
with heavyclients? 16
Chapter 2. EstimatingRisk 19
21, What1sfisk) . « v wnssssnsss s i ¢ csapmammmausisi 19
2.2. How can we protect ourselves fromrisk? 20
2.3.Determining the target 21

2.4. Determining the impact e 22

vi Safety of Web Applications

24.1.Confidentiality
242, Integrity e e e e e
243, Availability
2.4.4. Determining the level of risk associated with a project

2.5. Which causes or scenarios should be considered?
251 ASNS requirements . . o ¢ « ¢ conmanmmmmree w5
2.5.2. Determining the relevant causes and their likelihoods of
OCTUITEHGE 5 s s 604 4 8 s s 8 6+ NS FEEBE 6 8 ® B & EE s 3
2.5.3. Choosing the level of requirements

2.6. How should this study be performed in a company setting? . . .

Chapter 3. Encryption and Web Server Configuration

3.1. Examples of different webservers
3.2. Introduction to concepts inencryption
3.2.1. Symmetric encryption e e
3.2.2. Computing hashes and salting passwords
323 AsymmBsICEneryplion . « « « v s cscnusse s En e o

3.2.5. Digital certificates and the chain of certification
3.3. Generating and managing encryption certificates
3.3.1.The OpenSSL library
3.3.2. Different types of certificates
3.3.3. Generating certificates
3.3.4. Where are keys and certificates stored?
3.3.5. Commands for viewing keys and certificates
3.4. Implementing the HTTPS protocol
3.4.1. Understanding the HTTPS protocol
3.4.2. Implementing the HTTPS protocol
3.4.3. Testing the SSLchain
3.5. Improving the security of the Apache server
3.5.1. Ensuring that the server hosting Apache has the latest
SECUITE UDARIBE ¢ o s v v sim w s o s 5 5 5 5 8 8 4 AR EE &S ®S &3
3.5.2. Prohibiting low-security protocols
3.5.3. Preventing request flooding
3.5.4. Implementing a requestfilter
3.5.5. Allowing page header modifications
3.5.6. Authorizing .htaccess files

Contents i

3.5.7. Hiding the version information of Apache and PHP 63
36. Insummary 63
Chapter 4. Threats and Protecting Against Them 65
4.1. The threats associated with web-based environments 66
4.1.1. Limiting the types of authorized request 66
4.1.2. Preventing users from browsing the website file system . . . 67
4.1.3. Limiting the risk of session cookie hijacking 67
4.1.4. Hiding error messages v v v v vt vt 68
4.1.5. Asking browsers to enable safeguards 68
4.2. The top 10 most frequent attacks in2013 70
42.1.Codeinjection v v v it i e 70
4.2.2. Circumventing the login process and session hijacking . . . 78
4.2.3. Executing code to redirect to another website, or Cross
Site Scripting (XSS) L oo oo 81
4.2.4. Insecure direct object references 84
4.2.5. Poorly configured application or environment security . . . 88
4.2.6. Leaking sensitive information 88
4.2.7. Lack of access-level control for certain functions 91
4.2.8. Tricking users into unknowingly running legitimate
COMIMANGS : : : : v cavoosnsaE @ a9 ES 08 838658 s6n4 92
4.2.9. Using components with known vulnerabilities 93
4.2.10. Refusing redifects: - « s s s s s v uwwm ey 48 5 x 5 5 65 94
4.3, Other COUMEITNEASTUIBS. « - « v & & 5 @ o 5.5 8 5 5.8 8 5 5 5 & s # 94
4.3.1. Checking UTF-8 encoding 94
4.3.2. Analyzing uploaded documents with an antivirus 96
4.3.3. Preventing the browser from storing the login and
password L 102
4.3.4. Encrypting database access 104
4.4. Implementing a resource controller 108
4.4.1. Managing user connections 109
4.4.2. Monitoring behavior. 0. 112
443 Managmgalers « . v v con v e s sememe s nry e 117
Chapter 5. Managing User Logins and Assigning
Permissions 119
5.1. Managing user logins 119

5.1.1. Managing accounts in a database 120

viii ~ Safety of Web Applications

SA2. Lockingpasswords . . v s ccnwvosmnanswwrs w5 it
5.1.3. Retrieving the login from the company directory
5.1.4. Delegating the login process toa CAS server.
5.1.5. Doing more with CAS: identity federations with
Shibboleth : : c s csssssssessnsosmsapmusasaiss
5.1.6. Managing login offline using database storage
5.1.7. Managing the login process using a token encrypted
with asymmetrickeys
5.1.8. Creating tokens with the JWT protocol
5.1.9. Using the OAuth protocol to generate tokens
5.2. Managing permissions e e e e e e
5.2.1. What should we protect?
5.2.2. Managing user permissions with LDAP directory
B ccr s nrr Tl e R AR R R E PR S bR
5.2.3. Managing user permissions based on groups defined
INtheapplicalion . - o « 5+ c s s v s s s o A m s w5 5 5 5% 4 2 a
8.3 INSUMMALY & s s s w55 + s s s w i w6 F s s E o s s 55 5 585

Chapter 6. Using the MVC Model to Structure the
APPHCAIION . . s cvovans 11 convswmomanmaEnsss s s s

6.1. Why does the application structure matter?

6.2.2. VIEW . . o e o e e e e e e e e e e e e
6.2.3.Controller. e e e e
6.3.ConcClusion i e e e e e e e e

Chapter 7. Implementing a Suitable Technical Platform
and Testing the Application

7.1. Designing a suitable technical architecture
7.1.1. Integrating security into the earliest stages of the
PrOJECE . o o o i e e e e e e e e
7.1.2. Using code management systems suchas GIT
7.1.3. Using software to design the database
7.1.4. Implementing separate architectures for development
ANAPIOAUCHON - 5 s s s s cos s un s s o e m @ ma s as s s s &

7.2. Testing the security of the application

164
164

177
178

Contents ix

7.2.1. Analyzing vulnerabilities with ZAP Proxy 194
1:2.2. Certifyingthe application. ; « + = « 5 s s s 55 ¢ 65 65 5 & « & 199
7.2.3. Write the implementation documents 199

7.3. What options do we have if implementing security measures
for an application seems an impossible task? 200
Bibliography . :..::csccossnsnsness isssmassanms 203

INEEgE N, FELAPDFIEE www. ertongbook. com

