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Introduction

1 - Entire functions of several complex variables constitute an important
and original chapter in complex analvsis. The study is often motivated by
ceriain applications to specific problems in other areas of mathematics:
partial differential equations via the Fourier-Laplace transformation and
convolution operators. analytic number theory and problems of transcen-
dence, or approximation theory, just to name a few.

What is important for these applications is to find solutions which
satisfy certain growth conditions. The specific problem defines inherently a
growth scale, and one seeks a solution of the problem which satisfies certain
growth conditions on this scale, and sometimes solutions of minimal asymp-
totic growth or optimal solutions in some sense. '

For one complex variable the study of solutions with growth conditions
forms the core of the classical theory of entire functions and, historicalily, the
relationship between the number of zeros of an entire function f(z) of one
complex variable and the growth of | f] (or equivalently log|f]) was the first
example of a systematic study of growth conditions in a general setting.

Problems with growth conditions on the solutions demand much more
precise information than existence theorems. The correspondence between
two scales of growth can be interpreted often as a correspondence between
families of bounded sets in certain Fréchet spaces. However, for applications
it is of utmost importance to develop precise and explicit representations of
the solutions. :

If we pass from € to €% new preblems such as problems of- value
distribution for holomorphic mappings from €" to C™ arise. On the other
hand, new techniques are often needed for elassical problems to obtain solu-
tions and representations of the solutions. Zeros of entire functions f are no
longer isolated points; a measure of the zero set is obtained by the repre-
sentation of the divisor X, of f (and more generaily of analytic subvarieties)
by closed and positive currents, a class of generalized differential forms.

Paradoxally, it is the non-holomorphic objects, the “soft” objects (ob-
jets souples in French, see [C]) of complex analysis, principally plurisub-
harmonic functions -and positive closed currents, which are adapted to
problems with growth conditions, giving global representations in €". Very
often properties of the classical (i.e. holomorphic) objects will be derived
from properties obtained for the soft objects. Plurisubharmonic functions
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Vi Introduction

were introduced in 1942 by K. Oka and P. Lelong. They occur in a natural
way from the beginning of this book. Indicators of growth for a class of
entire functions f are obtained as upper bounds for log|f]; for log|f].
" To solve Cousin’s Second Problem, ie. to find (with growth conditions) an
entire function f with given zeros X in @", we solve first the general
equation i¢C V=0 for a closed and positive current 6; if 8=[X], the
current of integration on X, we then obtain f by V-—loglfl Properties of
plurisubharmonic functions appear again in a remarkable (and unexpected)
result of H.Skoda (1972): there exists a representation for the analytic
subvarieties Y in €" of dimension p(0<p<n—1) as the zero set Y=F~'(0)
of an entire mapping F =(fi, ..., f,,) such that |F| is controlled by the
growth of the area of Y. Plurisubharmonic functions obtained from poten-
tiais seem well adapted to the construciion of global representations in €";
the method avoids the delicate study of ideals of holomorphic functions
vanishing on Y and satisfying growth conditions.

The same methods using the soft object’s propertics of the current
{(i¢éV)” and the Monge-Ampére equation for plurisubharmonic functions V
are employed for recent resuits obtained in value disiribution theory of
holomorphic mappings €"— @™ or X — Y, two analytic subvarieties in C"

Il - Before summarizing the content of this book, we would like to make
some remarks.

a) We have not sought to give an exhaustive treatment of the subject
(problems for n>1 are too numerous for a single book). We have tried to
introduce the reader to the central problems of current research in this area,
essentially that which had led to general methods or new technics. Appli-
cations appear only in “Chapter 6 (to analytic number theory) and in
Chapters 8 and 9 (to functional analysis).

b) On the other hand, we have tried to make the book self-contained.
Some knowledge in the theory for one complex variable is required of the
reader, as well as on integration, the calculus of differential forms and the
theory of distributions. A list of books where the reader can find general
results not developped here is given before the bibliography (such references
are given by a capital roman letter).
~ The proofs of complementary results appear in three appendices:
Appendix I for general properties of plurisubharmonic functions,
Appendix II for the technic of proximate orders Appendix III for the &
resolution for (0, 1) forms with [*-estimates by Hormander’s method.

c) The importance of analytic representations, particulary for some ap-
plications, has made it necessary to give certain calculations in extenso. The
authors are aware of the technical aspect of some developments giver in the
book. We recommand that the reader first read over the proof in order to
assimilate the general idea before immersing himself in the details of the
calculations.

d) The literature on the subject of entire functions is enormous. The
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bibliogtaphy, without pretending to be exhaustive, gives an overview of
those areas of current interest. Each chapter has a short historical note
which is an attempt to explain the origin of the given results.

ITI - Chapter 1 gives the basic definitions of the growth scales in €" the
notion of order and type, the indicator of growth and proximate orders.
These classical notions extend trivially to plurisubharmonic functions and to
entire functions in €*. In Chapter 2, we introduce the reader to the funda-
mental properties of positive differential forms and of positive and closed
currents. Chapter 3 studies the solution with growth conditions of the equa-
tion i60V=4@ for @ a positive closed current of type (1, 1) in €", from which
we deduce for V=log|f| the solution with growth conditions in C" of
Cousin’s Second Problem and the representation of entire functions with a
given zero set. The result for an entire function of finite order in C" gives an
‘extension of classical results of J. Hadamard and E. Lindel6f for n=1. Chap-
ter 4 studies the class of entire functions f of regular growth. Certain results
are given here for the first time. The importance of this study, which is
based on the preceeding chapters. is in the numerous applications (Fourier
transforms, differential systems) and the possibility of associating the regular.
growth of log|f| with the regular distribution of the zero set of f.

Chapter 5 studies the problems of entire maps F:C"—C™ The first
portion is devoted to the development of a representation of an analytic
subvariety Y of C€" as the zero set of an entire map F: C"—C"*, that is Y

“Y0), F=(/,, ..., f,, ), with control of the growth of the function [|F|.
The second part studies the growth of the fibers F~'(@)nB(0,r), where
B(0,r)={z: |z|| <r}, when r—» +'co. The third part studies the relationship
between the growth of the area of an analytic set in €" and its trace on
linear subspaces of €". The cases of slow growth and algebraic growth are
also studied.

Chapter 6 gives an example of an application of the methods of the
preceeding chapters to a problem in number theory. We show that the set
of points of €" where certain families of meromorphic functions of finite
order take on algebraic values is contained in an algebraic subvariety of C”
whose degree can be bounded: this famous result of E. Bombieri (1970) gave
a very deep and unexpected application of the theory of closed positive
currents ¢ and of the number v,(x) (a2 kind of multiplicity for x on the
support of t) to number theory, via a classical method of Siegel and I*-
estimates for the ¢ operator. The same idea was also fundamental some time
later in Siu’s Theorem about the structure of closed positive currents.

Chapter 7 establishes the theory of the indicator of growth theorem for
entire functions of finite order in €": every plurisubharmonic function
positively homogeneous of order p is the (regularized) indicator of growth
function of an entire function of order p.

Chapters 8 and 9 concern applications of entire functlons to classes of
linear operators. Indeed the space 2(Q) of the Fourier transforms of the
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distributions defined in a bounded domain Q of €" is a subspace of the
space #(C€") of the entire functiops in €, and many problems characterize
classes of distributions in @ by growth properties of the image in 3#(L").
This method leads to analytic functionals. The analytic functionals are the
elements of the dual space of the space #°(2) of holomoiphic functions in 2,
ecuipped with the topology of uniform convergence on compact subsets of
Q. Chapter 8 gives a study of the Fourier-Borel transform and of the
Laplace transform in order to obtain properties for analytic functionals and
their supports.

Chapter 9 gives a general treatment of convolution operators in linear
spaces of entire functions. New results in particular for the functions of order
p<1 are given as consequences of the techniques developped in preceeding
sections of the book.

We use the following system of notations for references: a statement
(theorem, lemma, proposition, definition etc.) is given two numbers, the first
indjcating the chapter in which it is found and the second indicating its
position in that chapter. Thus, Theorem 8.23 refers to the 23-rd statement in
Chapter 8. Figures within parentheses refer to equations in the text, for
instance (4, 18) refers-to- the cighteenth equation in Chapter 4. Roman nu-
merals 1, I1, 11L, refer™o the three appendices which are at the end of the
book.

The authors thank K. Diederich, R. Gay, H. Skoda and M. Waldschmidt
who read different parts of the mapuscript and whose remarks were fruitful
for many improvements. They are indebted to Mireille Geurts for typing the
manuscript, which was no small nor easy task. And we should like to thank
the editors of Springer-Veriag for their excellent and rapid preparation of
the book.

Paris and Marseille, P. Lelong, Université Paris VI
January 1986 e L. Gruman, C.N.R.S. Marseille
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Chapter 1. Measures of Growth

§ 1. Preliminaries

We will let € represent the field of complex numbers and R the subfield of
real numbers. Let z=(z,, ..., z,) be an clement of €" and R*", the underlying
space of real coordinates. The transformations from the complex to the

Zp+ Zy
real coordmatea are given by z,=x,+iy, Z,=x,=i}, and X g
y"‘zkai . Unless specified to the contrary, we equip €" with the Euclidian

metric of R2": _ = e
S (L1) ' ds?=Y (@dx}+dyl)=7Y dz,-dz,

. k=1 k=1
and we choose for €" the volume form
/\ [dx, ndy)=(/2)"dz, AdZ, N... Adz, AT,
k=1
By a domain £, we shall always mean an open connected set. We let
dn(z), the dlstance to the boundary, be defined for zeQ by d,(z)= mf ||z z'fl

(where | || represents the Euclidean norm) and set dp(z)= +0 if Q (E" Let

e=(ory, .- a) be a multi-indice of non-negative integers. We then define |«|
plai
by lo|= Z o, the dlfferentlal operator. D* by D*= AR and z° by
i=1 . 1 - 0%

=2 T,

We let ¥*(Q) be the set of functions defined on Q ali of whose deriva-
tives up to order |¢|<k are continuous and ¥*(Q2) the set of functions
whose derivatives of all orders are continuous. By #%(Q) (resp. € (Q)) we
will mean the subset of €5(Q) (resp. € (2)) composed of those functions
whose support in  is compact. We let 6 and ¢ be the exterior differential
operators defined by

and set
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A function f: Q<= @€"— C is said to be holomorphic in 2 if fe%*(Q) and
o )
df =0. In particular, this means that a—£—=0 for 1£k=<n. The domain 4(z,r)

k

=[z:|z, —z,|<n, >0, 1 =k=n] is called the polydisc of center 2, of radii
r,. For A(z,r)€Q, and f holomorphic in @, the iteration of the Cauchy
Integral Formula for one complex variable gives for zeA(Z/, r) the integral
representation : '

n n ’ i0 ’ i
(12) f(z)=(21t)"'2j. 2§ [, +ne?, ... .2, +r.e )d

0 0

9, ...do,.

n
[1 G +ne®—z)
k=1

As for n=1, we deduce from (1,2) a Taylor series expansion:

f@=Y Cole=2P,  a=(a s 2,
()

which converges uniformly for |z, —z,| Sr, <r. Then we obtain a Taylor se-
ries expansion on each compact polydisc of Q. We designate by #(Q2) the
family of functions holomorphic in €. By an entire function, we shall mean
an element of »#(C"). Thus, an entire function f(z) has a Taylor series ex-
pansion f(zZ'+2)=) 3 P,(z')z* which, for every point z, converges uni-

m |laj=m
formly in z on compact subsets of €". We say that Y P(z')z* is the ho-

fa|=m

mogeneous polynomial of degree m in the Taylor series expansion of f(z) at
the point z".

§ 2. Subharmonic and Plurisubharmonic Functions

In our study of entire functions f of several complex variables, we shall be
interested in the asymptotic growth of | f|, fe#(C"), or equivalently by the
asymptotic growth of log|f]. Suppose for instance that ¢(f) is an increasing

t
function of ¢t for.t =0 such that lim sup ‘P((:;)< o0, for u=0 and lim ¢@(t)= oo,

- @ t—+w®

and consider in (") the subclass M, defined by the condition
log|f (@) =e(lzID+ C(f).

o log|fz)|
Ko =hmsup— by

measures an asymptotic growth with respect to the weight factor ¢(t) on the

real lines through the origin. Thus we are led to consider expressions of the

form limsup C,log|f)|, f;e#(C"), C,eR*. This leads us to study filtered
fel

Fhen the function
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families included in a larger class of functions, the plurisubharmonic func-
tions introduced by K. Oka and P. Lelong. This family is closed under the
operation of taking the smallest upper semi-continuous majorant of a fil-
tered family uniformly bounded above on compact subsets (in fact, one can
show that the functions Clog|f|, fe#(T"), CeR"*, generate locally the
plurisubharmonic functions under this operation, but we shall not need this
‘property). The plurisubharmonic functions play the same role for n>1
‘complex variables that the subharmonic function play in complex analysis
" of one complex variable. Moreover, in €, for n=2, the growth of entire
functions has properties which can be compared to the classical properties
(pseudo-convexity, sometimes R"-convexity) of domains of holomorphy. The
use of plurisubharmonic functions and the systematic exploitation of their
properties will lead to most of the results in this book.

We begin by recalling important definitions. The proofs of the properties
that we shall need can be found in Appendix | (referred to by App. I).

Definition 1.1. Let @<R" be a domain. A real valued function ¢(— o0 < ¢(x)
< + o0) is said to be subharmonic in Q if

a) ¢ is upper semi-continuous and ¢(x)% —oo in Q,

b) p(x)ZAlx,r, @)= a)"_[qo(x-kra)dcu (®) for r<dy(x) where w,, is the
Lebesgue measure of the unit sphere $™ ' in R™ and 1 is the mean value of
@ on S™~! relative to the Haar measure dw,,(x).

Definition 1.2. Let Q<" be a domain. A real valued function ¢(—co Zp(z)
< +o0) is said to be plunsubharmom’c in Q if it has property (a) above and

i
in addition b,) @(z) Sl(z,w,r, (p)—2— j o(z+wre'?)do for all w, r such that
z+uwc @ for ued, |u|Lr.

In the sequel we denote by D(z, w,r) the compact disc
{ZeC": 2’ =z+uw, ueC, |u|<r}.

We shall let S(£2) designate the set of subharmonic functions defined on a
domain Q<R™ and by PSH(Q) the set of plurisubharmonic functions de-
fined on a domain Q< C" We recall some classical properties of the sets
S(£2) and PSH (L) (we refer the reader to Appendix I for the proofs):

i) if 7, is the volume of the unit ball in R™ and @eS(Q), then
oSt tr™ [ @(x+x)dr(x)=Alx,r, @) for r<dg(x) (cf. Remark after
|x"|] S¢
Definition 1.1); 1
ii) S(Q) <L, (Q), the family of locally Lebesgue integrable functions,
and PSH(2)=S() for Q= C” (Proposition 1.9).
iz ii1) the set {xeQ: @(x)= — 0, pe8(Q)} is of Lebesgue measure zero. in Q -
{Corollary 1.12);
iv) for peS(Q) and xe either (p(x)<sup(p(x) or ¢ is a-constant (Prop-
osition 1.13);
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v) if @ePSH(Q) and D(z,w,ri= @, then the two functions r—l(z, w,7, )
and r— ;np @{z) are increasing convex functions of logr, and as a con-
z=Diz, w,r)
sequence A(z,r, @) and M(z,r,p)= sup (') are increasing convex func-
tions of logr (Proposition 1.17); 1= -=lsr

vi) if F:Q—-Q is a holomorphic homeomorphism (analytic isomor-
phism) of Q oato €2, then the map T: @ePSH(Q) - poF “fePSH(Q) is a
bijection’ (i.e. the class of plurisubharmonic functions is invariant with, re-
spect to holond orphw homeomorphisms and is thus an object of the analytic
structure; this is false for the larger class S(Q2)). -

The preceeding remarks shall play a crucial role, since for fe#(C"), the
functions log|f| form a subset ¥(€") of PSH(C"). But the class PSH(C")
also contains certain functions which do not belong to V(U™ (such as con-
vex functions in the space of the variables (fogr,,...,logr)) (cf. App.IJ).
What is more, it is fruitful to in roduce certain measure theoretic ooncepts
in the class PSH(T").

On PSH{Q) ‘.na S(£2), we consider the topology L,.(2) deﬁned by the

seminorms Np(p)= |<p(;)| dt{z) where dt is the Lebesgue measure and K is

compact in Q. Actual]v it is sufficient to consider the semi-norms N{@)
= [|o(2){d(z) where B, runs over a countable falmly -of compact balls

B ‘

which cover @ (in L, (Q), we do not distingnish between two functions

which are equal almost everywhere). We note that with this topelogy,
L},.(®) is a Fréchet space; S(£2) and PSH(Q) are convex cones in L (Q),

closed for this topology (see App.1).

Theorem 1.3. A subset M < S(Q) is bounded in L, () if and only if the ele-
ments of M have a common upper bound on every compact subset of £ end if
M does not contain a sequence which converges uniformly to —oo on each
compact set K< Q. .

Proof. If M is bounded in L (), then it does not contain a sequence @,
which tends uniformly to —co on any compact ball B, since the integrals
| lp,ldz are uniformly bounded. Let K be a compact subset of Q and define

B
K'by K'= U B(x,}8y) where &, mf [dg(x). 1].
Then K’ 1s compact in € and for xeK and @eS(Q2) we have
P)SAX,T05, Py St 265" | |e(x)ldT(x).
P

Thus, if M is bounded, the elements of M have a common’ upper bouad on
every compact subset of Q.

Conversely, let M =S(2) and suppose that M is uniformly bounded on
every compact subset of Q. If there exists a semi-norm N, such that {N(¢),
@eM}, is not bounded, we can find a sequence ¢,eM such that N,-(ga,‘2_—+ 00}
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and since the ¢, aie uniformly bounded above on B, lim { ¢,dv= —o0.

k— o0 B
Let >0 be the distance of B;=B(x;,7) to EQ, o= mf d,(x"), and let « be
such that 0 <2a < 4. For xeB(x;,a), we have b,
B, cB(x;,n+o)€B;=8B(x,, r+20)€Q.

If ¢ is an upper bound for ¢, in B;, then for xeB(xi,a), we obtain by the
Mean Value Property for subharmonic functions:

@(X)—eS A n+o, 0, —0) S[1,0n+0)"] ! [ [odx)—o]dz,
B;

S1, '+ ) " [Co+ | o, (x)d7,(x)]
g

which proves the uniform convergence of the sequence ¢, to —o0 on
B(x;, a).

Let © be the largest open subset of £ such that {¢,} converges to —
uniformly on every compact subset of Q. Since B(x,, o) (. we know that Q
is not empty. Moreover, if x’ is a limit point of @ in Q, there exists a ball
B(x', p)€EQ such that B(x, p)n € contains a set K& of positive Lebesgue
measure. Then lim | ¢@dr=—o0, and by the above reasoning,

k= B(x’, p)
¢,(x)— —oo uniformly on B(x’,a) for a>0 such that p+a<dy(x)). Thus
x'ef) so 0 is closed. Since £ is open, closed, and is a domain, 0=0. 0

§3. Norms on €" and Order of Growth

Let p(z) be a real valued function on " We say that p(z) is subadditive if
p(z+z)Sp(2)+p(2); we say that p(z) is positively homogeneous of order p
if p(tz)=1p(z) for 1 20; we say that p(z) s compiex homogeneous of order p
if p(uz)=|ul?p(z), ueC. If p(z) is subadditive and p(tz)=t|p(z) for teR (resp.
p(Az)=|4|p(z) for Ae(), we say that p(z) is a real (resp. complex ) semi-norm.
If, in addition; p(z)=0 if and only if z=0, then p{z) is a real (resp. complex)
norm.

If p(z) is a norm, we define the p-oall of center z and radius r by B,(z,7)
={z': p(z—2')<r}, and if the norm is not specified, it will be assumed to be
the Euclidean norm. ||zf. We recall that if p and g are two norms on €7
then each determines the unique separated veetor space topology on € and
there exist positive finite constants C, and C, such that

(1,3) 0<C, g-“—)-g £,



‘6 1. Measures of Growth
Given a function a(z): €"— R* ={reR:r>0}, we consider

(1,4) M, ,(r)= sup a(2).

pz)sr

It then follows from (1,3) that there exist constants C and C7
0<C< (C' <o, depending only on p(z) and g(z), such that for every real
valued function a(z)

-

(L.5) M, (CrEM, ()= M, (C'r).

The functions we shall consider will often be plurisubharmonic, and in
this case we have:

Proposition 1.4. If ¢(z) is plurisubharmonic in C", then
a) m,(z,z',r)=sup @(z+uz’) is identically — oo or an increasing convex

u|Sr
Sfunction of logr;
b) if p(z) is a complex norm, then M,, (r) is an increasing convex function
of logr.

Proof. For a): ¢(z+uz)= —oo for all ue€ or @(z+uz) is a subharmonic
function of the variable u=a+if in €=R? (cf. Remark 2 after Definition
1.2).

For b): Consider M, ,(r)= sup [sup @(uz)] and remark that

) zep~ (1) |u|Sr . g |
sup ¢(uz) is an increasing convex function of logr or identically —oc, but is
lul=r
not identically — oo for all z. O

)

§4. Minimal Growth: Liouville’s Theorem and Generalizations
The existence of a minimal growth for a non-constant function ¢ePSH(C")
is just a consequence of the convexity propertics of Proposition 1.4 and
formula (1,5).

Theorem 1.5. 1) Let p(z) be a norm and @(z) a plurisubharmonic function in

. M__(r WL, 5 : = 3
C" Then C=lim M) and C(z,z')=lim My 2,1) exist, either finite or
rew lOZT e ST LIORF
infinite, with the following properties:
a) C=0; moreover C(z,z')=0 with the possible exception C(z,z')= —o0
in which case @(z+uz')= —w for ueC.

b) C(z,uz)=C(z,2') for every ueC, u=0.
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ii) if p(z) is a norm on €©" and ¢(z+uz')F — 0, ueC, then ——— Mw »()

i)
P dlogr
nd Wgr m,(z, ', r) exist except perhaps for a countable set of r and
0 (r)
=1l ___L_
rll.r: dlog M., (") -To logr
lim 6m¢,(z,z,r) i m,(z, z,r)-
S Glogr S logr

Proof. There exists r,>0 such that M, (r))>—o0, and since it is an
increasing convex function of logr, M, ,(r)> —oo for r=r,, which proves
that C20. If @(z+uz)=—oo, then for r>1, (logr)™'m,(z,2,r)= —o0,
hence C(z, z)= — 20, Otherwise, ¢(z+uz) is an R2-subharmonic function of
u and hence by the above reasoning. C(z,z")=0. From the definition, by an
obvious calculation we obtain C(z, z')= C(z, uz’) for u=0. Part (ii) follows
directly from Proposition 1.4.

Theorem 1.6. Suppose fe'#(m and set @(z)=log|f(z)|. Let

C(z)=liminf 20227 _ ji Mel®: 220
r—= lOgl’ r—=w 10g

Then

i) n,={2'; C(z')<p} is a cone and if n, is not contained in an algebraic
hypersurface defined as the zero set of a homogenecis polynomial of degree
p' < p, then f is a polynomial of degree at most p;

ii) if f is a polynomial of degree m, then
C,.()=liminf [m {0,z r) —mlogrl=m,(0, 2, 1)

r—o
where  =log|P,| and B, is the homogeneou: polynomial of maximal degree m
in f. Furthermore for z e(l',"' — {0} we have

{z; C(2)= —0}={2'; B(z)=0}={z': C{z"NV$m}.

Proof. Let f(z')= 3. B(z)) be the Taylor series cxpansion of f(z) in terms

k=0

of hemogeneous polynomials. Then for ue @, f(uz))= Z B(z"Yu*. Tt follows

k=0
in

from the Cauchy lntegral Formula that E(z)=1/2x j' fre®zyr—*e=i*04p,

and hence log|R () =m0, Z, r) klogr. Thus, if there exists a sequence
r(z)—o such that [m (0,2, r,(2)) —klogr,(z)] = — o0, we have E(z)=0.
So ifw, is not contained in the zeros of a homogeneous polynomial of
degree p’'<p. then B(z')=0 for k>p. If 7{z) is 2 polynomial of degree m, -
then |f (rz')| £|B,(z)r™|+ O™ "), [rom which the second part follows. O



