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Preface

The ordinary Laplacian is defined as the ordinary second derivative of a func-
tion of one variable or the sum of the ordinary second partial derivatives of
a function of a higher number of variables in a physical or abstract Caresian
space. Physically, the ordinary Laplacian describes an ordinary diffusion pro-
cess in an isotropic medium mediated by non-idle random walkers who step into
neighboring or nearby sites of an idealized grid, but are unable to perform long
jumps.

In the physical sciences, the ordinary Laplacian appears as a contribu-
tion to a conservation law or evolution equation due to a diffusive species flux
according to Fick's law, a conductive thermal flux according to Fourier's law, or
a viscous stress according to the Newtonian constitutive equation. An implied
assumption is that the rate of transport of a field of interest at a certain location
is determined by an appropriate field variable at that location, independent of
the global structure of the transported field.

The fractional Laplacian, also called the Riesz fractional derivative, de-
scribes an unusual diffusion process due to random displacements executed by
jumpers that are able to walk to neighboring or nearby sites, and also perform
excursions to remote sites by way of Lévy flights. Literal or conceptual flights
have been observed or alleged to occur in a variety of applications, including
turbulent fluid motion and material transport in fractured media. In the con-
text of mechanics, the fractional Laplacian describes the motion of a chain or
array of particles that are connected by elastic springs not only to their nearest
neighbors, but also to all other particles. The spring constant diminishes with
the particle separation, while the particle array may describe an ordinary or
fractal configuration.

A key physical concept underlying the notion of the fractional Laplacian
is the fractional diffusive flux, arising as a generalization of the ordinary dif-
fusive flux expressed by Fick’s law, the ordinary conductive flux expressed by
Fourier’s law, or the expression for the viscous stress according to the Newto-
nian constitutive equation. The generalized flux associated with the fractional
Laplacian provides us with expressions for the rate of transport at a certain
location as an integral of an appropriate field variable over an appropriate do-
main of influence. The fractional diffusive flux at a certain location is affected
by the state of the field in the entire space.

The extraordinary effect of the fractional flux can be demonstrated by
considering species diffusion or heat conduction in two isolated patches that are
separated by an insulating material. Assume that the first patch is devoid of a
diffusing species, or else isothermal, whereas the second patch hosts a diffusive
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species, or else supports a temperature field. Under the influence of a fractional
flux, the first patch develops a concentration or temperature field due to the
second patch in a process that may appear as an optical illusion or an instance
of the paranormal. The physical reason is that material and energy can be
transported over long distances by physical or conceptual splattering.

In the most general abstract context, the fractional Laplacian describes
the contribution to a conservation law of a non-local process that is affected not
only by the local conditions, but also by the global state of a field of interest
at a given time. Non-local dependencies are familiar to those who study non-
Newtonian mechanics. Applications can be envisioned in a broad range of
disciplines in mainstream science and engineering, image processing, but also
in sociology, entomology, health care management, and finance.

The notion of the fractional Laplacian provides us with an interesting tool
for mathematical modeling when traditional approaches appear to fail. The
subtlety of the underlying mathematical concepts has motivated a substantial
body of literature in applied mathematics and selected physical sciences. De-
spite a long history and considerable progress made in recent years, the general
subject is still emerging and a number of conceptual and computational issues
require further elaboration.

My goal in this book is to offer a concise introduction to the fractional
Laplacian at a level that is accessible to mainstream scientists and engineers
with a rudimentary background in ordinary differential and integral calculus.
Emphasis is placed on fundamental ideas and practical numerical computation.
Original material is included throughout the book and novel numerical methods
are developed.

There are two intentional peculiarities in the presentation. First, the frac-
tional Laplacian in three dimensions is discussed in Chapter 5, followed by the
fractional Laplacian in two dimensions in Chapter 6, and then followed by the
fractional Laplacian in arbitrary dimensions in Appendix D. This ordering is
due to certain unusual properties of Laplace’s equation in two dimensions cou-
pled with the author’s belief that the most general case should not necessarily
be treated first. The second peculiarity relates to the occasional near-repetition
of discussion and equations in one, two, or three dimensions. Although consol-
idation would have abbreviated the discourse, it would have compromised the
reader’s ability to study the material in a non-sequential fashion.

C. Pozrikidis
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ordinary first derivative of a function, f(x)
ordinary second derivative of a function, f(x)
ordinary nth derivative of a function, f(x)
fractional first derivative of a function, f(x)
fractional Laplacian of a function, f(x)
fractional third derivative of a function, f(r)
fractional fourth derivative of a function, f(x)
Fourier transform of a function, f(z) or f(x)
fractional Laplacian of a function, f(x)
ordinary Laplacian of a function, f(x)
ordinary gradient of a function, f(x)
fractional gradient of a function, f(x)
ordinary divergence of a function, f(x)
fractional Laplacian of a function, f(x)

Gauss hypergeometric function

Riemann zeta function
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Gamma function

Laplacian potential, V* f = V2¢,

degenerate hypergeometric function

coefficient in front of the principal-value integral
defining the fractional Laplacian in d dimensions
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the fractional derivative or gradient in d dimensions
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the Laplacian potential of the fractional Laplacian
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The fractional Laplacian
i one dimension

In the first chapter, we provide physical motivation for the fractional Laplacian
of a function of one variable in the context of random walks underlying diffusion,
provide a rigorous definition for the fractional Laplacian in terms of the Fourier
transform or a principal-value integral, and discuss the Green’s function of the
fractional Laplace equation and of the unsteady fractional diffusion equation.
Numerical methods for solving differential equations involving the fractional
Laplacian are developed in Chapter 2, and further concepts in one dimension
are discussed in Chapter 3.

1.1 Random walkers with constant steps

Consider a column of N, point particles sitting on the x axis at the position
L= %A.r., and another column of N, point particles sitting on the  axis at the
mirror image position, r = ——é—A.’I?, where Az is a specified interval, as shown
in Figure 1.1.1(a). The total number of particles is 2/Np,.

At the origin of computational time, each particle starts making random
steps to the right with probability ¢ or to the left with probability 1 — ¢, where
q is a free parameter in the range 0 < g < 1. After one step has been made,
each particle has been displaced to the left or to the right by a fixed distance,
Az.

After n steps have been made, the particles have spread out from the
two initial columns to occupy discrete positions along the = axis located at the
half-integer nodes

z;=(i—3)Az (1.1.1)

for i = 0,+1,+2,..., where the ith node hosts m;(n) particles, as shown in
Figure 1.1.1(b). The initial condition specifies that m;(0) = 0 for any i, except
that

mo(0) = Np, m1(0) = Np (1.1.2)

describing the two columns. Since the particles move by a fixed distance Ax at
every step, m;(n) # 0 only for —n < i < n + 1. Particle number conservation
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(a)
X
— —a— —0——0
-2Ax -Ax Ax 2Ax
.‘!
A
(6)
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—o—] é | § g | g_*__d.-,f\
i e =2 =1 0 1 2 3

FiGure 1.1.1  (a) Initial and (b) subsequent distribution of random walkers moving with
constant step along the @ axis at notched positions.

requires that
n+1
> mi(n) = 2N, (1.1.3)
i=—mn

after any number of steps, n.

We may introduce an arbitrary time step, At, and regard
tn = nAt (1.1.4)

as time elapsed, providing us with a time series.

As a technicality, we note that, if all particles were placed in a single
file at the origin at the initial time, x = 0, they would occupy odd- and even-
numbered positions at later times, which is somewhat counterintuitive but not
essentially alarming.

1.1.1 Particle number density distribution
To study the collective particle motion, we quantify the population dynamics

in terms of a discrete number-density distribution defined as

el = ﬁmi(n) (L1.5)
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for i = —n,....n + 1, which may also be regarded as a discrete probability
density function (dpdf). By definition. and because of particle conservation,
n+-1
> piln)=1 (1.1.6)

i=—n
independent of the number of steps made. n. The initial condition specifies
that
1 1
po(0) = 3, m(0) = 3, (1.1.7)

describing the two columns in Figure 1.1.1(a).

Expected position and variance
Two variables of interest are: () the expected particle position after n steps
given by

n+1

T(n) = Z x; pi(n), (1.1.8)

=—n
and (b) the associated variance defined as the square of the standard deviation,
s(n), according to the equation

n+1

s2(n) = Z (2 —T(n))zp,-(n). (1.1.9)

i=—n

Expanding the square, we obtain

n+1 n+1 n+1
s3(n) = Z x? pi(n) — 27(n) Z z;i pi(n) + T2(n) Z pi(n). (1.1.10)
i=—n i=—n I=—n

Consolidating the second and third terms on the right-hand side, we obtain

n+1
s%(n) = —Z2(n) + Z 2 pi(n). (1.1.11)

t=—n

The sum on the right-hand side can be computed even before the expected
particle position is available.

Physical intuition suggests that the expected particle position evolves
linearly in time at a rate given by

dz  2¢—1

e ) 1.1.12

dt At ( )
For example, when ¢ = % the expected position remains constant, as each

particle has the same probability of moving to the right or left at each step. In
the extreme cases where g = 1 or 0, the two particle columns are shifted intact
to the right or left by one spatial interval, Az, in each step.



