Daniel Roehr and
Elizabeth Fassman-Beck

Living Roois
in Integrated Urban

]Water Systems



Daniel Roehr and
Elizabeth Fassman-Beck

Living Roofs in
Integrated Urban Water
Systems

é Routledge

Taylor & Francis Group
LONDON AND NEW YORK



First published 2015
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge
711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business
© 2015 Daniel Roehr and Elizabeth Fassman-Beck

The right of Daniel Roehr and Elizabeth Fassman-Beck to be identified as authors of this
work has been asserted by him/her in accordance with sections 77 and 78 of the Copy-
right, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilized in any
form or by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying and recording, or in any information storage or retrieval system,
without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trade-
marks, and are used only for identification and explanation without intent to infringe.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data

Roehr, Daniel.

Living roofs in integrated urban water systems/Daniel Roehr and Elizabeth Fassman-Beck.
pages cm.
Includes bibliographical references and index.
1. Rain gardens. 2. Urban runoff-Management. 3. Green roofs (Gardening) |. Fassman-
Beck, Elizabeth. II. Title.
TD657.4.R64 2015
635.9'671-dc23 2014033041

ISBN: 978-0-415-53553-3 (hbk)
ISBN: 978-1-315-72647-2 (ebk)

Typeset in Frutiger
by Wearset Ltd, Boldon, Tyne and Wear

FSC T™Penible sources Printed and bound in Great Britain by
i i i TJ International Ltd, Padstow, Cornwall




Living Roofs in Integrated
Urban Water Systems

With the infrastructure to manage stormwater threats in cities becoming increas-
ingly expensive to build or repair, the design community needs to look at alterna-
tive approaches. Living roofs present an opportunity to complement ground-level
stormwater control measures, contributing to a holistic, integrated urban water
management system.

This book offers tools to plan and design living roofs, in the context of effec-
tively mitigating stormwater. Quantitative tools for engineering calculations and
qualitative discussion of potential influences and interactions of the design team
and assembly elements are addressed.

Daniel Roehr is an Associate Professor at the University of British Columbia
School of Architecture and Landscape Architecture in Vancouver, Canada, a reg-
istered landscape architect in Vancouver and Berlin and a horticulturalist. Roehr
has designed and researched living roofs for over 20 years with his most signifi-
cant work being the ground-breaking water sensitive living roof design of the
DaimlerChrysler project Potsdamer Platz in Berlin, Germany.

Elizabeth Fassman-Beck is an Associate Professor in the Department of Civil,
Environmental, and Ocean Engineering at Stevens Institute of Technology in
Hoboken, New Jersey, USA. She has worked extensively with regulatory agencies
to develop evidence-based technical and practical design criteria for stormwater
control measures. Her former research team in Auckland, New Zealand devel-
oped the first living roof design guidance prioritizing stormwater management.
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Chapter 1: Introduction

1.1 WHY WORRY ABOUT WATER? WATER AS A DRIVER FOR LIVING ROOF
IMPLEMENTATION

Water is crucial for life on earth. It is our most precious resource. In many parts of
the world, water scarcity causes immense hardship for human, animal and plant
life. The extent of these areas is steadily increasing (International Water Manage-
ment Institute 2000; Rijsberman 2005; UN Water, Food and Agriculture Organi-
zation of the United Nations 2007). The quality of water has been degrading
rapidly since the Industrial Revolution, a situation which has been accelerated by
the immense increase in population over the last 40 years (Albiac 2009; Carr and
Neary 2009; Nienhuis and Leuven 2001). In the Western world, concerns over
water extend beyond basic infrastructure to now address the preservation of eco-
systems and ecosystem services. With increasing urgency, urban development
professionals including architects, landscape architects, engineers and planners
are researching and implementing various methods to recycle, store and reuse
water, improve its quality, and protect or restore the natural resource base from
which it is extracted (Margulis and Chaouni 2011; Planning Institute Australia
2003).

What we do with water use (how much) and its management (quality, where
it ends up, and how fast it travels) at a local level always impacts a larger system,
which in turn, feeds back to the availability and quality of water in our cities. Of
the many forms that water takes, this book is concerned with urban stormwater
runoff. It examines the role and design of living roofs to mitigate runoff’s envi-
ronmental and infrastructure impacts, while creating productive urban spaces.
Living roofs have to be seen from two sides: the pragmatic/technical side from an
engineer’s point of view alongside the environmental, social and/or aesthetic/
experiential side from a designer’s point of view. Designers try to create a human
experience resulting in a higher quality of life but this cannot happen without the
engineer's objective to protect water resources for creating and sustaining life.

Urban stormwater runoff poses a suite of receiving water and infrastructure
impacts that threaten public health and welfare as much as ecosystem services,
but also offers an opportunity of a resource to be captured for beneficial uses.

10



Introduction |l

The historic focus of an urban drainage system was to expediently remove or
dispose of runoff so as not to disrupt urban activities, damage structures or
threaten public safety. Expedient removal is no longer the only goal or cost. In
some cases, it is not the goal at all. Almost every aspect of the hydrologic cycle
(water’s distribution and flux in a watershed) is modified by urban development.
In a natural forested condition, 10-20mm of precipitation may be intercepted by
the vegetated canopy and infiltrated (soaked) into the ground before stormwater
runoff is generated at the surface. In an urbanized condition, runoff may be gen-
erated from as little as 2 mm of rain. Thus, in urban settings, flows are generated
almost every time it rains, and pollutants are transported to receiving waters such
as streams, rivers, lakes, estuaries, bays and harbors. Increased flow rates, runoff
volumes and occurrence of runoff along with how quickly runoff is initiated con-
tribute to channel erosion and instability, which degrades both physical and bio-
logical habitat structure by a process known as hydromodification (US EPA 1993).
Studies show that marked alteration of channel flow processes is associated with
declining ecological health, or degradation of the physical channel attributes
required for normal ecological functioning (Gippel 2001). Across the United
States, receiving water quality has largely been considered “degraded” for
decades; pollutants carried by urban runoff are largely discharged without treat-
ment. Altogether, hydromodification and pollutant loadings compromise aquatic
habitat, infrastructure and property almost every time it rains.

Reducing or avoiding impacts from “everyday” rainfall events is increasingly
incorporated into policy, but has not historically been the focus. Since 2001, US
state and municipal agencies in Portland, Philadelphia, Seattle, Atlanta, Chicago,
New York, Pittsburgh, Washington State, California, Maryland, Vermont and Vir-
ginia have introduced policies and related design requirements. Significant legis-
lation enacted in 2007, Section 438 of the USA Energy Independence and
Security Act, requires extensive on-site runoff control from “everyday” events for
federal facilities undergoing new or redevelopment. Living roof technology is per-
fectly suited to mitigate these sorts of storm events.

In many older cities, “everyday” stormwater impacts to receiving environ-
ments are exacerbated or even superseded by combined sewer overflows (CSOs).
Combined sewers are intended to carry sanitary sewerage and stormwater runoff
through the same pipes to a municipal wastewater treatment plant. In many
major cities around the world, urban infill and densification now generate flows
well exceeding the carrying capacity of the combined sewer network. By design,
overflow points discharge untreated runoff and sanitary sewerage into receiving
environments when the capacity of the sewer is exceeded during wet weather
(e.g., rain or snowmelt). While the intention is to prevent overloading the munici-
pal wastewater treatment facility, and causing even greater volumes of untreated
wastewater discharge, the impacts to local receiving environments can be devas-
tating. In Brooklyn, NY, modeling predicts CSO events to occur almost every time
it rains, without intervention (City of New York 2008). In New Jersey, the state
with the highest population density in the United States, as little as 5 mm of rain

20
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regularly causes CSOs (NY/NJ Baykeeper.org 2013). Philadelphia is served by 164
permitted CSO discharge points, serving 48 percent of the city (PWD 2011).
While larger storms cause the greatest volume of CSO, smaller storms create the
greatest number of CSO events. In many areas of the United States, these sorts
of discharges are in violation of the 1972 Clean Water Act and its amendments
(including the 1994 Combined Sewer Overflow Control Policy) and/or the Wet
Weather Water Quality Act of 2000. In the Pacific Northwest, CSOs and runoff
contaminants including the elevated temperature of untreated stormwater runoff
threaten salmonids protected by the 1973 Endangered Species Act. Environmen-
tal regulation and impending lawsuits and/or fines, exacerbated by shifting public
awareness and opinion, is causing municipalities and water utilities to invest sig-
nificant resources in reducing the frequency and volume of CSOs, and restoring
degraded waterways.

Upgrading buried infrastructure is increasingly found to be uneconomical and
impractical compared to surface-level action. Rigid grey infrastructure (pipes,
pumps, tanks and centralized treatment plants) lacks resilience. Alternatively,
small and large cities around the world are developing or are already implement-
ing green infrastructure (Gl) solutions for stormwater management. Although
many definitions of GI have been proposed, a useful compilation is “Natural and
engineered ecological systems which integrate with the built environment to
provide the widest range of ecological, community, and infrastructure services”
(greeningofcities.org 2012). The term green stormwater infrastructure (GSI) is
specifically used to identify approaches for runoff management.

Decisions defending GI and GSI adoption cite economics, inability to achieve
technical objectives using grey infrastructure, and multi-functionality over and
above provision of ecosystem services, particularly with respect to human health
and social capital. Across the world, the two largest municipal investments in GSI
were recently introduced in Philadelphia and New York City, specifically to
address CSO control and receiving water quality improvement. After a compre-
hensive alternatives analysis, the Philadelphia Water Department (PWD) deter-
mined that traditional grey infrastructure would be “cost prohibitive while also
missing the restoration mark."” Instead, the PWD is investing US$1.2 billion (2009
net present value) in GSI and in excess of US$3 billion in Gl over 25 years
“towards greening the city as a means to provide specific benefits ... while
meeting ecological restoration goals” (PWD 2011: 3). Implementing Gl across
New York City is projected to eliminate $1.4 billion and defer $2 billion from the
municipal government’s budget for state-mandated grey infrastructure projects
(City of New York 2012).

On a smaller scale, site or block-level initiatives are often instigated by munici-
palities in response to neighborhood complaints. Many successful stories and/or
pilot projects are emerging from Seattle, Portland, Lancaster (Pennsylvania), New
York City and Washington, DC where Gl solutions for stormwater are integrated
into street or intersection redevelopment to improve traffic and pedestrian safety.
Addressing runoff problems at — or close to — the source with Gl eases the
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