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Preface

When 1 started my doctoral research, my supervisor introduced me to
the concept of wavelets. Initially, I was quite suspicious about the term
wavelets. In time 1 came to learn that a wavelet is a powerful signal
processing tool and can do some amazing things — extract the features
hidden in a signal, for example. I became fond of wavelets and used the
wavelet analytic technique for most of my research work. However, |
realized that this particular topic was not easy to digest. More specifi-
cally, it was difficult to find suitable books outlining the application of
wavelets in engineering. Since then I had in mind a latent desire to write
such a book from my experience in this area that would be beneficial to
interested postgraduate students and researchers. The opportunity came
when I visited the stall of CRC Press at the 15th World Conference on
Earthquake Engineering in 2012 in Lisbon, Portugal. I expressed my
wish to write a book on applications of wavelets in civil engineering,
and was approached soon thereafter when we all decided to go ahead.

I am greatly indebted to Professor Biswajit Basu and Professor Mira
Mitra, who shared their valuable experiences with me and never hesitated
to carry out in-depth discussions at times on the topic. I am grateful to my
wife, Tanima, who has been a constant source of inspiration in my work,
as well as to my two children, Sraman and Soham, who spent quality time
with me to break up the monotony of writing. Last but not the least, sin-
cere thanks are due to my friend Dr Debashish Bhattacharjee, who always
encouraged me to remain strong in the face of daunting rasks.

Pranesh Chatterjee
Delft, the Netherlands
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MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001
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Introduction

The main objective of Chapter 1 is to introduce to readers the concept and
utility of wavelet transform. It begins with a brief history of wavelets refer-
ring to earlier works completed by renowned researchers, followed by an
explanation of the Fourier transform. The chapter also shows the advan-
tages of the wavelet transform over the Fourier transform through simple
examples, and establishes the efficiency of the wavelet transform in signal
processing and related areas. Chapter 2 first describes the discretization of
ground motions using wavelet coefficients. Later, it explains the formulation
of equations of motion for a single-degree-of-freedom system in the wavelet
domain, and subsequently the same is used to build the formulation for
multi-degree-of-freedom systems. The systems are assumed to behave in a
linear fashion in this chapter. The wavelet domain formulation of equilibrium
conditions of the systems and their solutions in terms of the expected largest
peak responses form the basis of the technique of wavelet-based formulation
for later chapters. Chapter 3 focuses on two distinct problems. The first is to
explain how to characterize nonstationary ground motion using statistical
functionals of wavelet coefficients of seismic accelerations. The second is to
develop the formulation of a linear single-degree-of-freedom system based
on the technique as described in Chapter 2 to obtain the pseudospectral
acceleration response of the system. The relevant results are also presented
at the end. Chapter 4 shows stepwise development of the formulation of
a structure idealized as a linear multi-degree-of-freedom system in terms
of wavelet coefficients. The formulation considers dynamic soil-structure
interaction effects and also dynamic soil-fluid—structure interaction effects
for specific cases. A number of interesting results are also presented at the
end of the chapter, including a comparison between wavelet-based analysis
and time history simulation. Chapter 5 describes the wavelet domain for-
mulation of a nonlinear single-degree-of-freedom system. In this case, the
nonlinearity is introduced into the system using a Duffing oscillator, and the
solution is obtained through the perturbation method. Chapter 6 introduces
the concept of probability in the wavelet-based theoretical formulation of
a nonlinear two-degree-of-freedom system. The nonlinearity is considered

xiii



xiv Introduction

through a bilinear hysteretic spring, and the probability conditions are
introduced depending on the position of the spring with respect to its yield
displacement condition. The analysis is supplemented with some numerical
results. In the last chapter (Chapter 7), focus is on diverse applications to
make readers aware of the use of wavelets in these areas. For this purpose,
three different cases are discussed. The first one is related to the analysis of
signals from bridge vibrations to identify axles of vehicles passing over the
bridge. The second example explains the basic concept and formulation of
stiffness degradation using a physical model. Thereafter, the chapter focuses
on using a numerical technique to obtain the results of a degraded model
(stiffness degradation through formation of cracks) and then compares the
wavelet-based analysis of the results obtained from linear and nonlinear
models. The third example is related to soil-structure—soil interaction. In
this example, the wavelet analytic technique is used to obtain the results
at the base of a structure considering dynamic soil-structure interaction.
Subsequently, the forces, shears and moments thus obtained at the base of
the model are applied at the supporting soil surface and a three-dimensional
numerical model of this structure—soil interaction problem is used to obtain
a nonstationary response within the soil domain.
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Chapter |

Introduction to wavelets

I.I HISTORY OF WAVELETS

In 1807, Joseph Fourier developed a method that could represent a signal
with a series of coefficients based on an analysis function. The math-
ematical basis of Fourier transform led to the development of wavelet
transform in later stages. Alfred Haar, in his PhD thesis in 1910 [1], was
the first person to mention wavelets. The superiority of Haar basis func-
tion (varying on scale/frequency) to Fourier basis functions was found
by Paul Levy in 1930. The area of wavelets has been extensively stud-
ied and developed from the 1970s. Jean Morlet, who was working as a
geophysical engineer in an oil company, wanted to analyse a signal that
had a lot of information in time as well as frequency. With the intention
of having a good frequency resolution at low-frequency components, he
could have used narrow-band short-time Fourier transform. On the other
hand, in order to obtain good time resolution corresponding to high-
frequency components, he could also have opted for broad-band short-
time Fourier transform. However, aiming for one meant losing the other,
and Morlet did not want to lose any of this information. Morlet used a
smooth Gaussian window (representing a cosine waveform) and chose
to compress this window in time to get a higher-frequency component
or spread it to capture a lower-frequency component. In fact, he shifred
these functions in time to cover the whole time range of interest. Thus, his
analysis consisted of two most important criteria — dilation (in frequency)
and translation (in time) — which form the basis of wavelet transform.
Morlet called his wavelets ‘wavelets of constant shape’, which later was
changed by other researchers only to *wavelets’. ].O. Stromberg [2] and
later Yves Meyer [3] constructed orthonormal wavelet basis functions.
Alex Grossmann and Jean Morlet in 1981 [4] derived the transforma-
tion method to decompose a signal into wavelet coefficients and recon-
struct the original signal again. In 1986, Stephen Mallat and Yves Meyer
developed multiresolution analysis using wavelets [3, 5, 6], which later in
1998 was used by Daubechies to construct her own family of wavelets. In



2 Wavelet analysis in civil engineering

1996, Daubechies [7] gave a nice, concise description of the development
of wavelets starting from Morlet through Grossmann, Mallat, Meyer,
Battle and Lemarié to Coifman, from the 1970s through mid-1990s. A
pool of academicians, including pure mathematicians, engineers, theoret-
ical and applied physicists, geophysical specialists and many others, have
developed various kinds of wavelets to serve specific or general purposes
as and when needed. Thus, though initiated mainly by the mathemati-
cians, wavelets have gained immense popularity in all fields of applied
sciences and engineering due to their unique time—frequency localization
feature. It is due to this unique property that the wavelet transform has
proved its ability (and reliability) in analysing nonstationary processes
to reveal apparently hidden information that no other tool could pro-
vide. The application areas are wide, e.g. geophysics, astrophysics, image
analysis, signal processing, telecommunication systems, speech process-
ing, denoising, image compression and so forth. The wavelets have been
applied analysing vibration signals. Some special techniques like discrete
and fast wavelet transforms have been developed for this purpose. Before
going into the discussion on wavelet analytic technique any further, it
would be wise to review the basic theory on Fourier transform at this
point.

1.2 FOURIER TRANSFORM

Most of the single-valued functions may be written as the summation of a
series of harmonic functions within a desired range. This series is termed
Fourier series. The concept of such a series has already been used by Daniel
Bernoulli in connection to solving problems of string vibrations. However,
it was Joseph Fourier, the French mathematician, who did a systematic
study on Fourier series for the first time. Fourier series has found many
applications in the fields of heat conduction, acoustics, vibration analysis,
etc. The Fourier series for a function f(x) in the interval o < x < o0 + 277 is
written as follows:

flx)= %+nz=la,, cos(nx)—i—"z::’b,, sin(rx) (1.1)
where
o+2n

w=2 [ foodx (12)
T
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a, = i I f (x)cos(nx)dx (1.3)
T

b, = ! J. £ (x)sin(nx)dx ) (1.4)
T

The readers should note that once the value of o is chosen as zero, the
interval becomes 0 < x < 27, and on choosing o = -7, the range becomes
-7 < x < 7. Thus, Fourier series can actually represent any periodic (and
also nonperiodic) function as the sum of simple sine and cosine waves. This
idea forms the basis of Fourier transform (FT), which is an extension of the
Fourier series. In Fourier transform, the period of the function may extend
to infinity. The Fourier transform retrieves the frequency content of a sig-
nal. It decomposes a signal into orthogonal trigonometric basis functions.
The Fourier transform X(w) of a continuous function x(¢) is defined in the
following equation:

X (@)= ﬁ Jx(t)e"“"dt (1.5)

—o0

In the above equation, the term X(w) gives the global frequency dis-
tribution of the time-dependent original signal x(¢). The original signal
x(¢) can be further reconstructed using the inverse Fourier transform as
defined below:

x(t) = ﬁ jX(m)e’w’dw (1.6)

The following Dirichlet conditions must be satisfied for Fourier trans-
form and its reconstruction:

1. The time function x(¢) and its Fourier transform X(co) must be
single-valued and piece-wise continuous.

2. The integral [~ |x(t)d: must exist that insists that if [ ee,
X(@w) — oo, .

3. The functions x(t) and X(®) have upper and lower bounds (however,
this is not a necessary condition).
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In case of signals obtained from experiments, they are discrete in
nature as they are sampled at N discrete time points with a sampling
time of, say, At. These signals are analysed in the frequency domain
using the concept of discrete Fourier transform (DFT), X, (o), as

defined below:

N-1

Xorr(fs) = %Zx(n)e"l""“ (1.7)

7=

It may be seen from Equation (1.7) that the DFT may be evaluated at
discrete frequencies f» =i , where n = 0, 1, 2, ..., N — 1. The inverse
DFT, as shown below, may be used to get back the original discrete time
signal.

N-1
1 T i2nfynAt
= =— IEAX 4 g 1.8
x(n) At prr(fa)e (1.8)

fn=0

It may be noted here that the NA? in the equation above denotes the time
length of the signal. The discrete Fourier transform computation requires
evaluation of real and imaginary parts separately; thus, 2N? numbers of
operations would be required. So, DFT works quite well when the signal
length is short. If the signal becomes large with numerous discrete time
points, DFT could become very tedious. The idea of fast Fourier transform
(FFT) is developed, which is computationally more efficient in such cases
because the FFT algorithm works on signals that must have as many sam-
ples as the power of 2 (i.e. 2" samples). The FFT is much faster because it
uses the results from previous computations and thereby reduces the num-
ber of operations required. It utilizes the periodicity and symmetry of trigo-
nometric functions to compute the transform with approximately NlogN
numbers of operations.

If the time-dependent function x(t) in Equation (1.6) has only one fre-
quency, the corresponding frequency spectrum, X(w), is a Dirac delta
function. So, if the frequency spectrum has only one frequency, say,
X(w)= d(w—my), then on substituting X(w) in Equation (1.6) the follow-
ing expression of x(#) is obtained:

x(t) = ——e (1.9)
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On substituting x(¢) on the right-hand side in Equation (1.5), the following
equation is obtained, which is one of the definitions of the Dirac delta function.

]

e je:(m—mn)ta’t — 6((1)— (Dn) (110)

—oa

The readers should also know about Parseval’s theorem and Parseval’s
identity at this stage, as these will be used in later chapters. Parseval’s theo-
rem is written as follows:

dt = ]:\X(m))zdw (1.11)

oo

|x()

§ 3

This implies that the total energy content of a function x(t) summed over
all time ¢ is equal to the total energy contained in its Fourier transform
summed across all of its frequency components.

1J'lf ]dt—7+2a,,+b; (1.12)

n=1

The identity tells us that the sum of the squares of the Fourier coefficients of a
certain function, say f(t), is equal to the integral of the square of the function.

1.3 RANDOM VIBRATION

The random vibration is a nondeterministic motion that has a unique
randomness in its characteristic. The vibrations induced in trains and
road vehicles due to track and road surface roughness, wind excitations,
ground motions and wave loading are common examples of random
vibrations. Typically, a random vibration may be either a stationary or a
nonstationary process. A common characteristic feature of these vibra-
tions is that these are randomly varying in time, which obviously means
that these are nondeterministic (and hence nonperiodic) in nature. This
implies that in case of random vibrations, it is not be possible to predict
the amplitude of vibration accurately at any specific instant; however,
one may predict the probability of occurrence of acceleration or displace-
ment amplitude at an instant. Unlike a pure sinusoidal vibration, a ran-
dom vibration contains a continuous spectrum of frequencies. It may
be worth mentioning here that the histogram of a random datum or



