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Introduction

The phenomenon of diffraction, which was originally seen as a
limiting factor in optics, is now a fundamental basis for the creation
of a new component base and advanced information technology.

The development of diffractive optics and nanophotonics devices
is based on a computer solution of direct and inverse problems
of diffraction theory, based on Maxwell’s equations. Among the
numerical methods for solving Maxwell’s equations most widely
used are: the finite-difference time-domain method, the finite element
method and the Fourier modal method, and also approximate methods
for calculating diffraction integrals.

The book is devoted to modern achievements of diffractive optics,
focused on the development of new components and devices for
nanophotonics, and devices and information technologies based on
them.

The first chapter describes the Fourier modal method, designed
for the numerical solution of Maxwell’s equations, as well as some
of its applications in problems of calculation of diffractive gratings
with the resonance properties and plasmon optics components.

The Fourier modal method (or rigorous-coupled wave analysis) has
a wide range of applications. In the standard formulation the method
is used to solve the problems of diffraction of a monochromatic
plane wave on diffraction gratings. Introduction of the light beam
in a plane-wave basis allows to use the method for modelling the
diffraction of optical pulses. Using the so-called perfectly matched
layers in combination with artificial periodization enables the method
to be used efficiently to solve the problems of the diffraction of light
waves by non-periodic structures. In this chapter the Fourier modal
method is considered for solving the diffraction of a plane wave in
the two-dimensional and three-dimensional diffractive gratings, as
well as in the case of non-periodic structures. The implementation
of the method is based on the numerical-stable approach, known as
the scattering matrix method.
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The resonance features in the spectra of periodic diffraction
structures are studied using the methods developed by the authors
for calculating the scattering matrix poles. These methods take into
account the form of the matrix in the vicinity of the resonances
associated with the excitation of eigenmodes in the lattice and,
compared with the known methods, have better convergence.

The Fourier modal method and scattering matrix formalism are
applied to the calculation of diffractive gratings with the resonance
properties for the conversion of optical pulses. The chapter proposes
a theoretical model of resonant gratings performing operations of
differentiation and integration of the optical pulse envelope and the
results of the calculation and research of diffractive gratings for the
differentiation and integration of picosecond pulses are presented.

The non-periodic variant of the Fourier modal method is used
in the problem of calculating the diffractive optical elements for
controlling the propagation of surface plasmon-polaritons. The
principle of operation is based on the phase modulation of surface
plasmon-polaritons by dielectric steps with changing height and
length and located on the surface of the metal.

The Fourier modal method is also applied to the task of calculating
the diffractive gratings forming, in the near-field, interference
patterns of evanescent electromagnetic waves and, in particular
plasmon modes. The chapter provides a theoretical description and
a number of numerical examples of calculation of the gratings
forming interference patterns of evanescent electromagnetic waves
and plasmon modes with a substantially subwavelength period
and demonstrates the ability to control the type and period of
the interference patterns of damped waves due to changes in the
parameters of the incident radiation.

The practical use of the results of the first chapter includes
systems for optical computing and ultra-fast optical information
processing, the creation of high-performance components plasmon
optics, the contact lithography systems and the systems for optical
trapping and manipulation of nanoscale objects.

The second chapter deals with the nanophotonics components
based on photonic crystals: the gradient planar photonic crystal (PC)
lens and photonic crystal fibers. The ultra-compact nanophotonic
device is described for effectively connecting two-dimensional
waveguides of different widths using the PC-lens. It is shown that
the PC-lens focuses the light into a small focal spot directly behind
the lens whose size is substantially smaller than the scalar diffraction
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limit. The simulation was performed using a finite difference solution
of Maxwell’s equations.

The second chapter also describes the method of calculation of
optical fibres with the PC cladding. In this waveguide the light
propagates within the core not due to the effect of total internal
reflection from the core—cladding interface. and by reflection from a
multilayer Bragg mirror formed by the system of periodically spaced
holes around the core. Calculation of spatial modes in PC-fibres is
based on partitioning the inhomogeneous fibre cross-section into a
set of rectangular cells, each with a set of known spatial sinusoidal
modes. Further cross-linking of all modes is carried out at the
interfaces of all cells. The PC waveguides differ from the step and
gradient waveguides by that they allow the modes to be localized
within the core, that is all the modes propagate inside the core
and almost do not penetrate into the cladding thus increasing the
diameter of the mode localized within the core. In addition, the PC
waveguides with a hollow core help to avoid chromatic dispersion
in the fibre and transmit light with higher power. A short pulse of
light passing through in a PC waveguide of finite size is transformed
at the output to white light due to non-linear dispersion. Sections
of the PC waveguides are used as filters, white light sources. and
non-linear optics for second harmonic generation.

The third chapter discusses the focusing of laser radiation. The
concept of the diffraction limit was established in the 19th century:
d__ = M(2n), where X is the wavelength of light in vacuum, » is the
refractive index of the medium. The third chapter shows that using
diffractive micro-optics components, focusing the light near their
surface it is possible to overcome the diffraction limit. Attention is
given to the sharp focusing of laser light using micro-components
such as the axicon, the zone plate, the binary and gradient planar
microlens, microspheres. Focusing light near the surface of the micro-
components allows to overcome the diffraction limit as a result of the
presence of surface waves and the influence of the refractive index
of the material of the focusing element. Simulation of focusing the
laser beam is carried out by the approximate Richards—Wolf vector
method and the finite difference solution of Maxwell’s equations.

Reducing the size of the focal spot and overcoming the diffraction
limit is an urgent task in the near-field microscopy. optical
micromanipulation, contact photolithography, increasing the density
of recording information on an optical disc. and coupling planar
waveguides of different widths.
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The tourth chapter describes the tocusing of singular vortex
laser beams. At the point of singularity the intensity of the light
field is zero, and the phase is not defined. There are abrupt phase
changes in the vicinity of this point. Singularities in light fields
can appear as they pass through randomly inhomogeneous and non-
linear media. It is also possible to excite vortex fields in laser
resonators and multimode optical fibres. The most effective method
of forming the vortex laser beams is to use spiral diffractive optical
elements, including spiral phase plates and spiral axicons. The fourth
chapter discusses the formation of vortex beams represented as a
superposition of Bessel, Laguerre~Gauss, Hermite—Gauss, etc. modes.
When focusing the vortex beams attention is paid to the combination
of different types of polarization and phase singularities which lead
to overcoming the diffraction limit of the far-field diffraction zone.

Main applications of vortex laser beams are sharp focusing of
laser light, manipulation of microscopic objects and multiplexing
the channels of information transmission.

In the fifth chapter we consider the problem of optical trapping,
rotation, moving, positioning of micro-objects through the use of
diffractive optical elements. Micro-objects are rotated by light beams
with an orbital angular momentum. Considerable attention is paid to
the methods of calculating the forces acting on the micro-objects in
light fields. The problem of creating the torque in micromechanical
systems using light beams has a fairly long history. In a number of
studied the problem of rotation is considered in conjunction with
other tasks: sorting, moving, positioning, etc. It should be noted that
in all the above cases the focus is primarily on the manufacturing
technology of micromechanics elements and no attempts are made
to improve the light beams. At the same time, the calculation and
application of diffractive optical elements, forming the vortex light
beams for a specific form of the micromechanical component can
improve the transmission efficiency of the torque in micromechanical
systems.

This chapter discusses two methods of calculating the diffractive
optical elements for forming light fields with a given amplitude-phase
distribution. One of them is based on calculating a focusator forming
a light field with a predetermined phase gradient along the contour.
Another method uses the superposition of zero-order Bessel beams to
form light traps in the form of hollow beams for opaque microscopic
objects. The results of experiments on optical trapping and relocation
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of micro-objects are presented. The chapter examines the possibility
of using light beams to move the biological micro-objects.

The book has been written by experts of the Image Processing
Systems Institute, Russian Academy of Sciences. In the first
chapter, sections 1.1 and 1.2 were written by D.A. Bykov, E.A.
Bezus and L.L. Doskolovich, section 1.3 by D.A. Bykov, L.L.
Doskolovich and V.A. Soifer, sections 1.4 and 1.5 by E.A. Bezus and
L.L. Doskolovich. The second chapter was written by V.V. Kotlyar,
A.A. Kovalev, A.G. Nalimov and V.A. Soifer. The third chapter —
by V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov and S.S. Stafeev. The
fourth chapter was written by S.N. Khonina and the fifth chapter by
R.V. Skidanov, A.P. Porfir'ev and V.A. Soifer.
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