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Introduction

This book is mainly for graduate students in physics and engineering,
and also suitable for undergraduate students at senior level and those
who intend to enter the field of theoretical physics. The contents cover
the mathematical knowledges of the following fields: the theories of
variational method, of Hilbert space and operators, of ordinary linear
differential equations, of Bessel functions, of Dirac delta function, of
the Green’s function in mathematical physics, of norm, of integral
equations, the application of number theory in physics, the basic
equations in multidimensional spaces and non-Euclid spaces. The
book explains the concepts and deduces the formulas in great details.
It is very learner-friendly with its content level gradually from being
easy to being difficult. A great amount of exercises are beneficial to
readers.



Preface

This book grew from a graduate course that I have taught at
Tsinghua University. It was originally written in Chinese and pub-
lished by Science Press in Beijing. World Scientific Publishing and
Science Press have been very kind to jointly publish this English ver-
sion. This English version has been compressed in space compared
to the original Chinese version.

The aim of this book is to integrate the necessary aspects of math-
ematics for graduate students in physics and engineering. The under-
graduate students at senior level and researchers who intend to enter
the field of theoretical physics were supposed possible readers. Read-
ers are assumed to have knowledges of linear algebra and complex
analysis. Some familiarity with elementary physical knowledges could
be a prerequisite for deriving full benefit from reading this book.

This book consists of ten chapters. Chapter 1 introduces the vari-
ational method. Chapter 2 introduces the theories of Hilbert space
and operators. In chapter 3, the theory of ordinary linear differen-
tial equations of second order is systematically presented. The poly-
nomial solutions are given. The method of drawing series solutions
based on the complex analysis is given. The problems concerning the
adjoint equations are discussed. Chapter 4 comprehensively intro-
duces Bessel functions and their various deforms. Chapter 5 intro-
duces Dirac delta function. Chapter 6 presents the theory of Green’s
function in mathematical physics. By the way, the author has written
a graduate textbook systematically introducing the Green’s function
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in condensed matter physics. Chapter 7 introduces the theory with
respect to norm. Chapter 8 introduces the theory of integral equa-
tions. In these chapters, the author payed attention to the link up
with the contents that readers may have learnt in undergraduate
courses.

The last two chapters are an attempt to introduce some recent
achievements of scientific research into the textbook while presenting
mathematical basic knowledges.

Chapter 9 introduces the basis of number theory and its appli-
cation in physics, material science and other scientific fields. This
kind of application was initiated by a Chinese scientist, Prof. Chen
Nanxian. The author thought that this ingenious method was wor-
thy of being introduced to readers. The mathematical basis in this
chapter is relatively simple, but it leads to useful and wide results.
This achievement has never been introduced in textbooks except a
literary work by Chen himself.

Chapter 10 introduces the fundamental equations in spaces with
arbitrary dimensions. This is because in modern physics, research
has been not limited to three-dimensional space and one-dimensional
time, and not limited to Euclid space. The author tries hard to intro-
duce some basic knowledge in multidimensional spaces starting from
the ordinary differential equations of second order. The associated
Gegenbauer equation and its solutions enable us to realize the values
of the angular momentum and their projections in Euclid spaces. The
pseudo spherical coordinates were introduced. Although they were
employed for the discussion on Euclid spaces, they apparently were
also useful to investigations on non-Euclid spaces. Plain terminolo-
gies were utilized to present the concept of metric, without resorting
to symmetry or group theory. The author believed that this is a way
easily grasped by readers. The work on the Klein-Gorden equation
and Maxwell equation were new and interesting.

When presenting the mathematical basic theory, the logic rigor
was assured without loss of understandability. The author tried hard
to clearly narrate the basic concepts and the relations between them.
The derivations of the formulas were given in detail as far as possi-
ble. For proofs of the theorems, when they were too long or needed
knowledges that were beyond the scope of this paper, we had to
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omit them. The explanations of the questions asked by students in
the course of my teaching have been covered.

This textbook does not include the content of group theory, for
there have been textbooks specialized for group theory.

The author thought that a great amount of exercises are beneficial
to readers. Most of the exercises in this book were collected from
materials. A few were prepared by the author.

The author thanks Prof. Chen Nanxian for introducing his smart
work to the author. The contents in Chapter 9 in this book are all
from Prof. Chen’s work.

The investigations of the Klein-Gorden equation and Maxwell
equations in de Sitter spacetime are from the work of Prof. Zhou
Bin. The author thanks him for providing his achievements and for
his helpful discussions.

I acknowledge and express my deep sense of gratitude to the valu-
able discussions and helps from Professors Wang Chongyu, Zhou
Yunsong, Xun Kun, Han Rushan, Tong Dianmin, Zheng Yujun and
Yu Yabin.

I wish to express my thanks to my wife Miao Qing and my family
members Miao Hui, Miao JiChun and Wang Nianci for their constant
help in my work and life.

A special thank goes to Prof. Lu Xiukun, who taught me mathe-
matics when I was a student in secondary school.

Finally, I thank editor Qian Jun for his help in publishing the
original Chinese version and present English version.

The author acknowledges the National Key Research and Devel-
opment Program of China under Grant No. 2016 YFB0700102.

This English version has been translated from Chinese by myself,
with slight updating over the original Chinese version. I shall be
most grateful to those readers who are kind enough to bring to
my notice any remaining mistakes, typographical or otherwise for
remedial action. Please feel free to contact me.

Wang Huaiyu
Tsinghua University, Beijing, April 2016
wanghuaiyu@mail.tsinghua.edu.cn
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