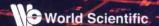
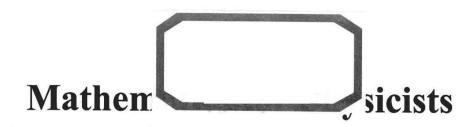
Mathematics for Physicists

物理学中的数学方法

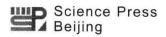
Wang Huaiyu _{王怀玉}





(物理学中的数学方法)

Wang Huaiyu (王怀玉)



Wang Huaiyu

Department of Physics, Tsinghua University, Beijing China

Copyright© 2017 by Science Press Published by Science Press 16 Donghuangchenggen North Street Beijing 100717, P. R. China

Printed in Beijing

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

ISBN 978-7-03-052079-1

Introduction

This book is mainly for graduate students in physics and engineering, and also suitable for undergraduate students at senior level and those who intend to enter the field of theoretical physics. The contents cover the mathematical knowledges of the following fields: the theories of variational method, of Hilbert space and operators, of ordinary linear differential equations, of Bessel functions, of Dirac delta function, of the Green's function in mathematical physics, of norm, of integral equations, the application of number theory in physics, the basic equations in multidimensional spaces and non-Euclid spaces. The book explains the concepts and deduces the formulas in great details. It is very learner-friendly with its content level gradually from being easy to being difficult. A great amount of exercises are beneficial to readers.

Preface

This book grew from a graduate course that I have taught at Tsinghua University. It was originally written in Chinese and published by Science Press in Beijing. World Scientific Publishing and Science Press have been very kind to jointly publish this English version. This English version has been compressed in space compared to the original Chinese version.

The aim of this book is to integrate the necessary aspects of mathematics for graduate students in physics and engineering. The undergraduate students at senior level and researchers who intend to enter the field of theoretical physics were supposed possible readers. Readers are assumed to have knowledges of linear algebra and complex analysis. Some familiarity with elementary physical knowledges could be a prerequisite for deriving full benefit from reading this book.

This book consists of ten chapters. Chapter 1 introduces the variational method. Chapter 2 introduces the theories of Hilbert space and operators. In chapter 3, the theory of ordinary linear differential equations of second order is systematically presented. The polynomial solutions are given. The method of drawing series solutions based on the complex analysis is given. The problems concerning the adjoint equations are discussed. Chapter 4 comprehensively introduces Bessel functions and their various deforms. Chapter 5 introduces Dirac delta function. Chapter 6 presents the theory of Green's function in mathematical physics. By the way, the author has written a graduate textbook systematically introducing the Green's function

in condensed matter physics. Chapter 7 introduces the theory with respect to norm. Chapter 8 introduces the theory of integral equations. In these chapters, the author payed attention to the link up with the contents that readers may have learnt in undergraduate courses.

The last two chapters are an attempt to introduce some recent achievements of scientific research into the textbook while presenting mathematical basic knowledges.

Chapter 9 introduces the basis of number theory and its application in physics, material science and other scientific fields. This kind of application was initiated by a Chinese scientist, Prof. Chen Nanxian. The author thought that this ingenious method was worthy of being introduced to readers. The mathematical basis in this chapter is relatively simple, but it leads to useful and wide results. This achievement has never been introduced in textbooks except a literary work by Chen himself.

Chapter 10 introduces the fundamental equations in spaces with arbitrary dimensions. This is because in modern physics, research has been not limited to three-dimensional space and one-dimensional time, and not limited to Euclid space. The author tries hard to introduce some basic knowledge in multidimensional spaces starting from the ordinary differential equations of second order. The associated Gegenbauer equation and its solutions enable us to realize the values of the angular momentum and their projections in Euclid spaces. The pseudo spherical coordinates were introduced. Although they were employed for the discussion on Euclid spaces, they apparently were also useful to investigations on non-Euclid spaces. Plain terminologies were utilized to present the concept of metric, without resorting to symmetry or group theory. The author believed that this is a way easily grasped by readers. The work on the Klein-Gorden equation and Maxwell equation were new and interesting.

When presenting the mathematical basic theory, the logic rigor was assured without loss of understandability. The author tried hard to clearly narrate the basic concepts and the relations between them. The derivations of the formulas were given in detail as far as possible. For proofs of the theorems, when they were too long or needed knowledges that were beyond the scope of this paper, we had to

Preface

omit them. The explanations of the questions asked by students in the course of my teaching have been covered.

This textbook does not include the content of group theory, for there have been textbooks specialized for group theory.

The author thought that a great amount of exercises are beneficial to readers. Most of the exercises in this book were collected from materials. A few were prepared by the author.

The author thanks Prof. Chen Nanxian for introducing his smart work to the author. The contents in Chapter 9 in this book are all from Prof. Chen's work.

The investigations of the Klein-Gorden equation and Maxwell equations in de Sitter spacetime are from the work of Prof. Zhou Bin. The author thanks him for providing his achievements and for his helpful discussions.

I acknowledge and express my deep sense of gratitude to the valuable discussions and helps from Professors Wang Chongyu, Zhou Yunsong, Xun Kun, Han Rushan, Tong Dianmin, Zheng Yujun and Yu Yabin.

I wish to express my thanks to my wife Miao Qing and my family members Miao Hui, Miao JiChun and Wang Nianci for their constant help in my work and life.

A special thank goes to Prof. Lu Xiukun, who taught me mathematics when I was a student in secondary school.

Finally, I thank editor Qian Jun for his help in publishing the original Chinese version and present English version.

The author acknowledges the National Key Research and Development Program of China under Grant No. 2016YFB0700102.

This English version has been translated from Chinese by myself, with slight updating over the original Chinese version. I shall be most grateful to those readers who are kind enough to bring to my notice any remaining mistakes, typographical or otherwise for remedial action. Please feel free to contact me.

Wang Huaiyu Tsinghua University, Beijing, April 2016 wanghuaiyu@mail.tsinghua.edu.cn

Contents

Introduction

Preface

Chap	ter 1	Variational Method	1
1.1.	Functio	nal and Its Extremal Problems	1
	1.1.1.	The conception of functional	1
	1.1.2.	The extremes of functionals	3
1.2.	The Var	riational of Functionals and the Simplest	
	Euler E	quation	7
	1.2.1.	The variational of functionals	7
	1.2.2.	The simplest Euler equation	12
1.3.	The Ca	ses of Multifunctions and Multivariates	16
	1.3.1.	Multifunctions	16
	1.3.2.	Multivariates	19
1.4.	Functio	nal Extremes under Certain Conditions	22
	1.4.1.	Isoperimetric problem	22
	1.4.2.	Geodesic problem	26
1.5.	Natural	Boundary Conditions	29
1.6.		onal Principle	33
	1.6.1.	Variational principle of classical mechanics .	34
	1.6.2.	Variational principle of quantum	
		mechanics	40
1.7.	The Ap	oplications of the Variational Method	
	in Phys	ics	41

	1.7.1.	The applications in classical physics	44
	1.7.2.	The applications in quantum mechanics	48
Exerc	cises .		50
Chaj	pter 2	Hilbert Space	55
2.1.	Linear	Space, Inner Product Space	
	and Hi	lbert Space	55
	2.1.1.	Linear space	55
	2.1.2.	Inner product space	63
	2.1.3.	Hilbert space	71
2.2.	Operat	tors in Inner Product Spaces	74
	2.2.1.	Operators and adjoint operators	74
	2.2.2.	Self-adjoint operators	84
	2.2.3.	The alternative theorem for the solutions	
		of linear algebraic equations	94
2.3.	Compl	ete Set of Orthonormal Functions	96
	2.3.1.	Three kinds of convergences	96
	2.3.2.	The completeness of a set of functions	98
	2.3.3.	N-dimensional space and Hilbert	
		function space	101
	2.3.4.	Orthogonal polynomials	103
2.4.	Polyno	omial Approximation	109
	2.4.1.	Weierstrass theorem	109
	2.4.2.	Polynomial approximation	112
Exer	cises .		120
Cha	pter 3	Linear Ordinary Differential	
		Equations of Second Order	127
3.1.	Genera	al Theory	127
	3.1.1.	The existence and uniqueness of solutions	127
	3.1.2.	The structure of solutions of homogeneous	
		equations	130
	3.1.3.	The solutions of inhomogeneous equations	137
3.2.	Sturm	-Liouville Eigenvalue Problem	140
	3.2.1.		140

	3.2.2.	The boundary conditions of Sturm-Liouville	
		equations	142
	3.2.3.	Sturm-Liouville eigenvalue problem	144
3.3.	The Po	lynomial Solutions of Sturm-Liouville	
	Equation	ons	151
	3.3.1.	Possible forms of kernel and weight	
		functions	151
	3.3.2.	The expressions in series and in derivatives	
		of the polynomials	158
	3.3.3.	Generating functions	165
	3.3.4.	The completeness theorem of orthogonal	
		polynomials as Sturm-Liouville solutions	169
	3.3.5.	Applications in numerical integrations	171
3.4.	Equation	ons and Functions that Relate to the	
	Polynor	mial Solutions	174
	3.4.1.	Laguerre functions	175
	3.4.2.	Legendre functions	179
	3.4.3.	Chebyshev functions	185
	3.4.4.	Hermite functions	190
3.5.	Comple	ex Analysis Theory of the Ordinary Differential	
	Equation	ons of Second Order	196
	3.5.1.	Solutions of homogeneous equations	196
	3.5.2.	Ordinary differential equations	
		of second order \dots	216
3.6.	Non-Sel	lf-Adjoint Ordinary Differential Equations	
	of Secon	nd Order	224
	3.6.1.	Adjoint equations of ordinary differential	
		equations	224
	3.6.2.	Sturm-Liouville operator	225
	3.6.3.	Complete set of non-self-adjoint ordinary	
		differential equations of second order	229
3.7.		onditions under Which Inhomogeneous	
	-	ons have Solutions	231
Exerc			236
Appe	ndix 3A	Generalization of Sturm-Liouville Theorem	
		to Dirac Equation	244

Chap	oter 4	Bessel Functions	247
4.1.	Bessel	Equation	247
	4.1.1.	Bessel equation and its solutions	247
	4.1.2.	Bessel functions of the first	
		and second kinds	255
4.2.	Fundar	mental Properties of Bessel Functions	258
	4.2.1.	Recurrence relations of Bessel functions	258
	4.2.2.	Asymptotic formulas of Bessel functions	261
	4.2.3.	Zeros of Bessel functions	262
	4.2.4.	Wronskian	264
4.3.	Bessel	Functions of Integer Orders	266
	4.3.1.	Parity and the values at certain points	266
	4.3.2.	Generating function of Bessel functions	
		of integer orders	267
4.4.	Bessel	Functions of Half-Integer Orders	273
4.5.	Bessel	Functions of the Third Kind and Spherical	
	Bessel	Functions	275
	4.5.1.	Bessel functions of the third kind	275
	4.5.2.	Spherical Bessel functions	280
4.6.	Modifie	ed Bessel Functions	288
	4.6.1.	Modified Bessel functions of the first	
		and second kinds	288
	4.6.2.	Modified Bessel functions of integer orders	293
4.7.	Bessel	Functions with Real Arguments	294
	4.7.1.	Eigenvalue problem of Bessel equation	294
	4.7.2.	Properties of eigenfunctions	297
	4.7.3.	Eigenvalue problem of spherical	
		Bessel equation	301
Exerc	cises .		302
Chap	oter 5	The Dirac Delta Function	311
5.1.	Definit	ion and Properties of the Delta Function	311
	5.1.1.	Definition of the delta function	311
	5.1.2.	The delta function is a generalized	
		function	312

Contents xi

	5.1.3.	The Fourier and Laplace transformations	
		of the delta function	314
	5.1.4.	Derivative and integration of generalized	
		functions	315
	5.1.5.	Complex argument in the delta function	318
5.2.	The Del	ta Function as Weak Convergence Limits	
	of Ordin	nary Functions	320
5.3.	The Del	ta Function in Multidimensional Spaces	330
	5.3.1.	Cartesian coordinate system	330
	5.3.2.	The transform from Cartesian coordinates	
		to curvilinear coordinates	331
5.4.	General	ized Fourier Series Expansion of the Delta	
	Function	n	335
Exerc	ises		339
Chap	ter 6	Green's Function	345
6.1.	Fundam	nental Theory of Green's Function	345
	6.1.1.	Definition of Green's function	345
	6.1.2.	Properties of Green's function	347
	6.1.3.	Methods of obtaining Green's function	352
	6.1.4.	Physical meaning of Green's function	360
6.2.	The Ba	sic Solution of Laplace Operator	362
	6.2.1.	Three-dimensional space	363
	6.2.2.	Two-dimensional space	365
	6.2.3.	One-dimensional space	369
6.3.	Green's	Function of a Damped Oscillator	371
	6.3.1.	Solution of homogeneous equation	371
	6.3.2.	Obtaining Green's function	372
	6.3.3.	Generalized solution of the equation	373
	6.3.4.	The case without damping	374
	6.3.5.	The influence of boundary conditions	375
6.4.	Green's	Function of Ordinary Differential Equations	
	of Secon	nd Order	376
	6.4.1.	The symmetry of Green's function	377

	0.4.2.	Solutions of boundary value problem of	
		ordinary differential equations of second	
		order	378
	6.4.3.	Modified Green's function	381
	6.4.4.	Examples of solving boundary value problem	
		of ordinary differential equations	
		of second order	388
6.5.	Green's	Function in Multi-dimensional Spaces	394
	6.5.1.	Ordinary differential equations of second	
		order and Green's function	394
	6.5.2.	Examples in two-dimensional space	400
	6.5.3.	Examples in three-dimensional space	418
6.6.	Green's	Function of Ordinary Differential Equation	
	of First	Order	421
	6.6.1.	Boundary value problem of inhomogeneous	
		equations	421
	6.6.2.	Boundary value problem of homogeneous	
		equations	421
	6.6.3.	Inhomogeneous equations and Green's	
		function	422
	6.6.4.	General solutions of boundary	
		value problem	425
6.7.	Green's	Function of Non-Self-Adjoint Equations	425
	6.7.1.	Adjoint Green's function	425
	6.7.2.	Solutions of inhomogeneous equations	427
Exerc	cises		429
Chap	pter 7	Norm	435
7.1.	Banach	Space	435
	7.1.1.	Banach space	435
	7.1.2.	Hölder inequality	439
	7.1.3.	Minkowski inequality	442
7.2.	Vector 2	Norms	443
	7.2.1.	Vector norms	443
	7.2.2.	Equivalence between vector norms	446
73	Matrix	Norms	447

Contents	xiii

	7.3.1. 7.3.2.	Matrix norms	447
		of matrices	455
7.4.	Operato	r Norms	459
	7.4.1.	Operator norms	459
	7.4.2.	Adjoint operators	465
	7.4.3.	Projection operators	469
Exerci	ises		473
Chap	ter 8	Integral Equations	477
8.1.	Fundame	ental Theory of Integral Equations	477
	8.1.1.	Definition and classification	
		of integral equations	477
	8.1.2.	Relations between integral equations	
		and differential equations	481
	8.1.3.	Theory of homogeneous integral equations	484
8.2.	Iteration	Technique for Linear Integral Equations	490
	8.2.1.	The second kind of Fredholm	
		integral equations	490
	8.2.2.	The second kind of Volterra	
		integral equations \dots	502
8.3.	Iteration	Technique of Inhomogeneous	
	Integral	Equations	504
	8.3.1.	Iteration procedure	504
	8.3.2.	Lipschitz condition	506
	8.3.3.	Use of contraction	509
	8.3.4.	Anharmonic vibration of a spring	510
8.4.	Fredholm	n Linear Equations with Degenerated	
	Kernels		512
	8.4.1.	Separable kernels	512
	8.4.2.	Kernels with a finite rank	521
	8.4.3.	Expansion of kernel in terms	
		of eigenfunctions	532
8.5.	Integral	Equations of Convolution Type	535
	8.5.1.	Fredholm integral equations	
		of convolution type \dots	535

	8.5.2.	Volterra integral equations	
		of convolution type	538
8.6.	Integra	l Equations with Polynomials	543
	8.6.1.	Fredholm integral equations	
		with polynomials	543
	8.6.2.	Generating function method	544
Exer	cises		547
Cha	pter 9	Application of Number Theory	
		in Inverse Problems in Physics	557
9.1.	Chen-N	Möbius Transformation	557
	9.1.1.	Introduction	557
	9.1.2.	Möbius transformation	560
	9.1.3.	Chen-Möbius transformation	567
9.2.	Inverse	Problem in Phonon Density of States	
		stals	571
	9.2.1.	Inversion formula	571
	9.2.2.	Low-temperature approximation	574
	9.2.3.	High-temperature approximation	577
9.3.	Inverse	Problem in the Interaction Potential	
	betwee	n Atoms	580
	9.3.1.	One-dimensional case	581
	9.3.2.	Two-dimensional case	586
	9.3.3.	Three-dimensional case	592
9.4.	Additiv	ve Möbius Inversion and Its Applications	597
	9.4.1.	Additive Möbius inversion of functions	
		and its applications	598
	9.4.2.	Additive Möbius inversion of series	
		and its applications	606
9.5.	Inverse	Problem in Crystal Surface Relaxation	
		terfacial Potentials	609
	9.5.1.	Pair potentials between an isolated atom	
		and atoms in a semi-infinite crystal	609
	9.5.2.	Relaxation of atoms at a crystal surface	612
	9.5.3.	Inverse problem of interfacial potentials	614

Contents

9.6.	Constru	ction of Biorthogonal Complete	
	Function	Sets	617
Exerc	ises		620
Appe	ndix 9A.	Some Values of Riemann ζ Function	622
		Calculation of Reciprocal Coefficients	625
Chap	oter 10	Fundamental Equations in Spaces	
		with Arbitrary Dimensions	627
10.1.	Euclid S	paces with Arbitrary Dimensions	628
	10.1.1.	Cartesian coordinate system and spherical	
		coordinates	628
	10.1.2.	Gradient, divergence and Laplace operator .	632
10.2.	Green's	Functions of the Laplace Equation	
	and Heli	mholtz Equation	636
	10.2.1.	Green's function of the Laplace equation \dots	636
	10.2.2.	Green's function of the Helmholtz equation .	639
10.3.	Radial E	Equations under Central Potentials	641
	10.3.1.	Radial equation under a central potential	
		in multidimensional spaces	641
	10.3.2.	Helmholtz equation	643
	10.3.3.	Infinitely deep spherical potential	644
	10.3.4.	Finitely deep spherical potential	644
	10.3.5.	Coulomb potential	646
	10.3.6.	Harmonic potential	649
	10.3.7.	Molecular potential with both	
		negative powers	650
	10.3.8.	Molecular potential with positive	
		and negative powers	651
	10.3.9.	Attractive potential with exponential	
		decay	652
	10.3.10.	Conditions that the radial equation	
		has analytical solutions	652
10.4.	Solution	s of Angular Equations	654
	10.4.1.	Four-dimensional space	656
	10.4.2.	Five-dimensional space	661
	10.4.3.	N-dimensional space	662

10.5.	Pseudo	Spherical Coordinates		. 6	666
	10.5.1.	Pseudo coordinates in four-dimensional			
		space		. 6	666
	10.5.2.	Solutions of Laplace equation		. 6	668
	10.5.3.	Five- and six-dimensional spaces		. 6	571
10.6.	Non-Eu	clidean Space		. 6	674
	10.6.1.	Metric tensor	•	. 6	574
	10.6.2.	Five-dimensional Minkowski space			
		and four-dimensional de Sitter space		. 6	378
	10.6.3.	Maxwell equations in de Sitter spacetime		. 6	89
Exerc	ises			. 6	697
Apper	ndix 10A	. Hypergeometric Equation and			
		Hypergeometric Functions		. 6	399
Refer	ences			7	03
Answ	ers of S	elected Exercises		7	05
Auth	or Index	*		7	21
Subje	Subject Index				23