The LTE-Advanced Deployment Handbook

The Planning Guidelines for the Fourth Generation Networks

Jyrki T. J. Penttinen

THE LTE-ADVANCED DEPLOYMENT HANDBOOK

THE PLANNING GUIDELINES FOR THE FOURTH GENERATION NETWORKS

Edited by

Jyrki T. J. Penttinen Giesecke & Devrient, USA

This edition first published 2016 © 2016 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

The LTE-advanced deployment handbook: the planning guidelines for the fourth generation networks / edited by Jyrki T. J. Penttinen.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-48480-7 (cloth)

 Long-Term Evolution (Telecommunications) 2. Cell phone systems—Design and construction. I. Penttinen, Jyrki T. J., editor. TK5103.48325.L7344 2016

621.3845'6-de23 2015027994

A catalogue record for this book is available from the British Library. ISBN: 9781118484807

Set in 10/12pt, TimesLTStd-Roman by Thomson Digital, Noida, India.

Printed in Singapore by C.O.S. Printers Pte Ltd

THE LTE-ADVANCED DEPLOYMENT HANDBOOK

List of Contributors

Parth Amin, Ericsson, Finland

Mohmmad Anas, Flextronix, Canada

Jonathan Borrill, Anritsu, Sweden

Francesco D. Calabrese, Huawei, Sweden

Jacek Góra, Nokia, Poland

Marcin Grygiel, Nokia, Poland

Piotr Grzybowski, Nokia, Poland

Tero Jalkanen, TeliaSonera, Finland

Juha Kallio, Nokia, Finland

Ilkka Keisala, TeliaSonera, Finland

Damian Kolmas, Huawei, Sweden

Krystian Krysmalski, Nokia, Poland

Jarosław Lachowski, Wilabs, Poland

Sebastian Lasek, Nokia, Poland

Grzegorz Lehmann, Nokia, Poland

Luis Maestro, Nokia, USA

Krystian Majchrowicz, Nokia, Poland

Guillaume Monghal, Huawei, Sweden

Maciej Pakulski, Nokia, Poland

Jyrki T. J. Penttinen, Giesecke & Devrient, USA

Pertti Penttinen, Ifolor, Finland

Mateusz Raczkowiak, Nokia, Poland

Olli Ramula, Nokia, Finland

viii List of Contributors

Katarzyna Rybiańska, Nokia, Poland

Krystian Safjan, Nokia, Poland

Szymon Stefanski, Samsung Electronics, Poland

Stanisław Strzyz, Datax, Poland

Agnieszka Szufarska, Nokia, Poland

Dariusz Tomeczko, Nokia, Poland

Elpiniki Tsakalaki, Aalborg University, Denmark

Krzysztof Wiśniowski, Nokia, Poland

Preface

Mobile communications technologies are developing in giant leaps especially in the current LTE era. The initial phase of the enhanced 3G system driven by 3GPP resulted in LTE/SAE, as defined in Release 8. It has already opened doors for a much more fluent user experience, thanks to the considerably higher data rates and lower response times compared to any other previous cellular system. The first LTE deployments took place in 2010–11, and the pace has been breathtaking ever since. According to 4G Americas (www.4gamericas.org), there were 755 Million LTE subscribers by June 2015, which proves there is high demand for mobile data.

Further development has resulted in the 3GPP Release 10 standards which represent the first set for the LTE-Advanced (LTE-A) system. The ITU (International Telecommunications Union) has defined demanding criteria for the use of the term 4G, including requirements for the capability of the mobile network to transfer a minimum of 1 Gb/s data rate in the downlink. 3GPP LTE in Release 10 starts to include enough components that jointly contribute to the total performance so efficiently that it can already be called an ITU-compliant 4G system. In practice, the term 4G has been used already for some time to distinguish even between basic LTE and the previous 3G variants. This market interpretation is of course justified as the LTE as such opens the door to the next generation via the gradual upgrading of the network and user device functionalities. Nevertheless, in this book, the term 4G refers to the 3GPP LTE Release 10 and beyond, while earlier LTE variants in Release 8 and 9 are referred to in this book as "evolved 3G, or pre-4G" systems.

At the time of writing, there have already been 32 LTE-Advanced networks in 23 countries by the end of 2014, according to 4G Americas. The deployments are still expanding so it can be expected that Release 10 and beyond networks will be widely available for we mobile users to enjoy fluent connectivity and to consume high-quality multimedia contents globally easier than ever.

Observing all the accelerating developments of mobile communications technologies, it is in fact almost impossible to keep track of the advances even in real-time web discussion forums. Nevertheless, I believe it is totally justified to summarize technical areas in a single package, as *The LTE-Advanced Deployment Handbook* aims to do, to aid studies in capturing the complete picture and the key set of relevant details. Even with the further advances beyond this book contents, the basics described here will be an important building block for the investigations of the next releases. As an additional aim to ensure the contents of this book are up to date, there also are updates provided in www.tlt.fi which collects further key data and useful information about the development of LTE and LTE-Advanced systems.

x Preface

This book is the result of innumerable hours of work by the team, and there are many highly relevant real-world experiences behind each chapter. I hope our creation of this information package on LTE-Advanced principles, functionality and planning has been worth the effort and you will find it useful in your studies and work. As was the case with the previous *LTE/SAE Deployment Handbook*, published by Wiley in 2011, I would be glad to receive your valuable feedback about this book directly via my e-mail address jyrki.penttinen@hotmail.com.

Jyrki Penttinen Morristown, NJ, USA

Acknowledgments

The LTE-Advanced Deployment Handbook is a follow-on to the previously published LTE/SAE Deployment Handbook which describes key aspects of the initial LTE phase. This LTE-Advanced Deployment Handbook details the now essential functionality of the system and provides planning guidelines for the developed phase of LTE in Release 10 and beyond.

This book is the result of our contributor team's efforts as well as our collaboration with many LTE subject matter experts and seasoned professionals. I would like to thank the whole team and the participating colleagues for the most valuable information sharing and contribution, often sacrificing their precious private time. I know that the team has succeeded excellently in our mission to provide an up-to-date, practical and useful guide for both academic as well as operational LTE-Advanced environments.

Warm thanks go to the Wiley team which guided and made sure the project was finalized successfully; I want to give my special thanks to Mark Hammond, Sandra Grayson, Teresa Netzler, Sarah Keegan and Clarissa Lim, and all others from the Wiley team who have worked on this project, as well as Shikha Pahuja at Thomson Digital.

I also want to express my warmest gratitude to the Finnish Association of Non-fiction Writers for the most welcome support.

Finally, I thank Elva, Stephanie, Carolyne, Miguel, Katriina and Pertti for all their support.

Jyrki Penttinen

Abbreviations

2G Second Generation of mobile communication technologies 3G Third Generation of mobile communication technologies

3GPP 3rd Generation Partnership Project

4G Fourth Generation of mobile communication technologies

16-QAM 16-state Quadrature Amplitude Modulation 64-QAM 64-state Quadrature Amplitude Modulation AAA Authentication, Authorization & Accounting

AAS Active/Adaptive Antenna System

ABS Almost Blank Subframes
AC Admission Control

ACIR Adjacent Channel Interference Rejection

ACK Acknowledgment

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity
ACS Advanced Communications Services

ACS Advanced Communications Serv

ADC Analogue/Digital Conversion

ADSL Asynchronous Digital Subscriber Line

AF Application Function

A-GNSS Assisted Global Navigation Satellite System

aGW Access Gateway

AKA Authentication and Key Agreement
AMBR Aggregated Maximum Bit Rate
AMC Adaptive Modulation and Coding

ANDSF Access Network Discovery and Selection Function

ANR Automatic Neighbor Relation

AoA Angle of Arrival

APAC Asia Pacific, Africa and China

APN Access Point Name

ARFCN Absolute Radio Frequency Channel Number

ARP Allocation Retention Priority
ARPU Average Revenue Per User
ARQ Automatic Repeat request

AS Application Server

ATB Adaptive Transmission Bandwidth

xiv Abbreviations

ATCF Access Transfer Control Function
ATGW Access Transfer Gateway Function
ATM Asynchronous Transfer Mode
AWS Advanced Wireless Services (band)

BBIC Baseband Integrated Circuit BCCH Broadcast Control Channel

BCH Broadcast Channel
BE Best Effort
BER Bit Error Rate

BICC Bearer Independent Call Control
BIP Bearer Independent Protocol
BLEP Block Error Probability
BLER Block Error Rate

BPSK Binary Phase Shift Keying BQS Bad Quality Sample

BS Base Station

BSC Base Station Controller
BSR Buffer Status Report
BSS Business Support System
BTS Base Transceiver Station

BW Bandwidth

CA Carrier Aggregation

CAMEL Customised Applications for Mobile networks Enhanced Logic

CAPEX Capital Expenditure
CAT Category (user equipment)

CAZAC Constant Amplitude Zero AutoCorrelation

CB Coordinated Beam forming

CC Component Carrier

CCCH Common Control Channel
CCN Cell Change Notification
CCO Cell Change Order

CCO Coverage and Capacity Optimization
CDMA Code Division Multiple Access
CDP Charging Downstream Port

CDR Call Drop Rate

CDR Charging Data Record CDR Clock Drift Ratio

CES Circuit Emulated Services
CET Carrier Ethernet Transport
C/I Carrier per Interference
CIO Cell Individual Offset
CLF Contactless Frontend

CMAS Commercial Mobile Alert System

CN Core Network

CoMP Coordinated Multipoint

CoS Class of Service
CP Cyclic Prefix

Abbreviations

CPE Customer Premises Equipment

CPICH Common Pilot Channel COL Channel Quality Indicator CRC Cyclic Redundancy Check Cell Range Expansion CRE Circuit Switched CS CS Coordinated Scheduling **CSFB** Circuit Switched Fall Back CSI Channel State Information

CT Core Network and Terminals (TSG)

CTIA Cellular Telecommunications and Internet Association

CVAA Communications and Video Accessibility Act

DAB Digital Audio Broadcasting
DCCH Dedicated Control Channel
DCP Dedicated Charging Port
DCR Dropped Call Rate
DCS Dynamic Cell Selection
DD Digital Dividend
DDOS Distributed DoS

DeNodeB Donor eNodeB element

DFCA Dynamic Frequency and Channel Allocation

DFT Discrete Fourier Transform

DFTS-OFDM Discrete Fourier Transform Spread-OFDM

DHR Dual Half Rate (voice codec)

DL Downlink

DLDC Downlink Dual Carrier
DL-SCH Downlink Shared Channel
DMRS Demodulation Reference Symbol
DM-RS Demodulation Reference Signal

DoS Denial of Service Deep Packet Inspection DPI DRS Dedicated Reference Symbol DRX Discontinuous Reception DSCP DiffServ Code Point DSL Digital Subscriber Line DSMIPv6 Dual-Stack Mobile IPv6 DTM Dual Transfer Mode

DTMF Dual Tone Multi-Frequency
DTX Discontinuous Transmission

DUT Device Under Test

DVB-H Digital Video Broadcasting, Handheld DVB-T Digital Video Broadcasting, Terrestrial

DwPTS Downlink Pilot Timeslot

eBM-SC Evolved Broadcast/Multicast Service Center

E-CID Enhanced Cell ID

ECM EPS Connection Management

E-CSCF Emergency Call State Control Function

xvi Abbreviations

EDGE Enhanced Data Rates for Global Evolution

EFL Effective Frequency Load

EGAN Enhanced GAN EHPLMN Equivalent HPLMN

eHRPD Evolved High Rate Packet Data

eICIC Enhanced Inter-Cell Interference Coordination

EIRP Effective Isotropic Radiating Power

eMBMS Evolved MBMS

EMM EPS Mobility Management EMR Enhanced Measurement Reporting

eNB Evolved NodeB

EOL End of Life (product phase)

EPC Evolved Packet Core

ePDG Evolved Packet Data Gateway
EPS Evolved Packet System
ERP Effective Radiated Power
eSE Embedded Secure Element

E-SMLC Enhanced Serving Mobile Location Centre

ET Envelope Tracking

ETSI European Telecommunications Standards Institute

ETWS Earthquake and Tsunami Warning System
E-UTRAN Evolved UMTS Radio Access Network

EV-DO Evolution-Data Only EVM Error Vector Magnitude

FACCH Fast Associated Control Channel

FCC Federal Communications Commission (USA)

FCCH Frequency Correction Channel FDD Frequency Division Duplex

FDPS Frequency-Domain Packet Scheduling

FER Frame Erasure Rate FF Form Factor

FFS For Further Study
FFT Fast Fourier Transform
FH Frequency Hopping
FM Fault Management

FOMA Freedom of Mobile Multimedia Access

FR Frame Relay

FR Full Rate (voice codec)

FR-AMR AMR Full Rate

GAN Generic Access Network
GBR Guaranteed Bit Rate
GCF Global Certification Forum

GERAN GSM EDGE Radio Access Network (TSG)

GGSN GPRS Gateway Support Node
GMLC Gateway Mobile Location Centre
GMM GPRS Mobility Management
GMSK Gaussian Minimum Shift Keying

Abbreviations xvii

GoS Grade of Service
GP Guard Period

GPRS General Packet Radio Service
GRE Generic Routing Encapsulation
GRX GPRS Roaming Exchange

GSM Global System for Mobile communications

GSMA GSM Association

GTP GPRS Tunnelling Protocol GTT Global Text Telephony

GTT-CS Global Text Telephony over video telephony
GTTP GPRS Transparent Transport Protocol
GTT-Voice Global Text Telephony over voice

GW Gateway

HARQ Hybrid Automatic Retransmission on request/Hybrid Automatic Repeat

Request

HD High Definition

HDSL High-bit-rate Digital Subscriber Line

HeNB Home eNB

HLR Home Location Register

HO Handover

hPCRF Home Policy and Charging Rules Function

HPLMN Home PLMN

HR Half Rate (voice codec)

HR-AMR AMR Half Rate HRPD High Rate Packet Data

HSCSD High Speed Circuit Switched Data HSDPA High Speed Downlink Packet Access

HSPA High Speed Packet Access HSS Home Subscriber Server

HSUPA High Speed Uplink Packet Access

ICI Inter-Carrier Interference
ICIC Inter Cell Interference Control
ICS IMS Centralized Services

I-CSCF Interrogating Call State Control Function IDFT Inverse Discrete Fourier Transform

IE Information Element

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force
IFFT Inverse Fast Fourier Transform

I-HSPA Internet HSPA

IMEI International Mobile Equipment Identity

IMS IP Multimedia Sub-system

IMSI International Mobile Subscriber Identity

IMS-MGW IMS-Media Gateway

IMS-NNI IMS Network-Network Interface

IM-SSF IP Multimedia – Service Switching Function

IMT-2000 International Mobile Telecommunication requirements (ITU)

xviii Abbreviations

IMT-Advanced Advanced International Mobile Telecommunication requirements (ITU)

IN Intelligent Network

INAP Intelligent Network Application Protocol

IoT Internet of Things
IOT Inter-Operability Testing

IP Internet Protocol

IPSec IP Security

IP-SM-GW IP-Short Message-Gateway

IPv4 IP version 4
IPv6 IP version 6
IPX IP eXchange

IPXS IP interconnection of services

IQ In-phase (I) and out of phase (Q) components of modulation

IRC Interference Rejection Combining

ISI Inter-Symbol Interference

ISIM IMS Subscriber Identity Module ISR Idle Mode Signalling Reduction

ISUP ISDN User Part

ITU International Telecommunication Union
ITU-R ITU's Radiocommunication Sector
ITU-T ITU's Telecommunication sector
JAIN Java APIs for Integrated Networks

JP Joint Processing

JSLEE JAIN Service Logic Execution Environments

JT Joint Transmission

KPI Key Performance Indicator

LA Link Adaptation LA Location Area

LAU Location Area Update

LBO Local Breakout

LBS Location Based Service

LCS Location Service

LIG Lawful/Legal Interception
Ligal Interception Gateway

LIPA Local IP Access

LNF Log Normal Fading (margin)
LPP LTE Positioning Protocol

LPPa LPP annex

MAN

LRF Location Retrieval Function

LSP Label Switch Path
LTE Long Term Evolution
LTE-A LTE-Advanced
LTE-UE LTE User Equipment
MA Mobile Allocation
MAC Medium Access Control
MAIO Mobile Allocation Index Offset

Metropolitan Area Network

Abbreviations xix

MBI MIMO Band Index

MBMS Multimedia Broadcast Multicast Service

MBR Maximum Bit Rate

MBSFN MBMS Single Frequency Network area

MCC Mobile Country Code
MCCH Multicast Control Channel

MCE Multi-cell/multicast Coordination Entity

MCH Multicast Channel

MCS Modulation and Coding Scheme

MC-TD-SCDMA Multi-Carrier Time-Division Synchronous-Code-Division Multiple Access

MC-WCDMA Multi-Carrier Wide-band Code-Division Multiple Access

MDT Minimization of Drive Tests
ME id Mobile Equipment Identifier

MEG Mean Effective Gain MER Modulation Error Rate

MGCF Media Gateway Control Function

MGW Media Gateway MHA Mast Head Amplifier

MIMO Multiple Input Multiple Output

MM Mobility Management
MME Mobility Management Entity
MMS Multimedia Messaging Service

MMTel Multimedia Telephony MNC Mobile Network Code MO Mobile Originating (call)

MOBSS Multi-Operator Base Station Subsystem

MOCN Multi-Operator Core Network

MORAN Multi-Operator Radio Access Network

MOS Mean Opinion Score

MPLS Multi-Protocol Label Switching MRF Media Resource Function

MRFC Media Resource Function Controller
MRFP Media Resource Function Processor
MRM Measurement Report Message

MRO Mobility Robustness/handover Optimization

MS Mobile Station

MSC Mobile services Switching Center

MSC-B Second MSC

MSISDN Mobile Station ISDN number
MT Mobile Terminating (call)
MTCH Multicast Traffic Channel

MT-LR Mobile Terminating Location Request

MTM Machine-to-Machine (communications); also M2M

MVNO Mobile Virtual Network Operator

NA Network Assisted

NACC Network Assisted Cell Change NACK Negative Acknowledgment xx Abbreviations

NAS Non Access Stratum

NAS SMC NAS Security Mode Command

NB Node B

NBC Non-Backwards Compatible

NCCR Network Controlled Cell Reselection

NDS Network Domain Security

NE Network Element

NE Id Network Element Identifier NFC Near Field Communications

NGMN Next Generation Mobile Networks (Alliance)

NGN Next Generation Network
NH Next Hop (parameter)
NITZ Network Initiated Time Zone
NNI Network-Network Interface
NOC Network Operations Centre

NRT Near Real Time

NVAS Network Value Added Services

OAM&P Operations, Administration, Maintenance, and Provisioning

OEM Original Equipment Manufacturer

OFDMA Orthogonal Frequency Division Multiple Access

OLLA Outer Loop Link Adaptation
OLPC Open Loop Power Control

OMS Operations and Management System

OPEX Operating Expenditure
OSC Orthogonal Sub Channel

OSPIH Internet Hosted Octect Stream Protocol

OSS Operational Support System

OTA Over the Air

OTDOA Observed Time Difference of Arrival

OTT Over the Top
P2P Peer-to-Peer
PA Power Amplifier

PAPR Peak-to-Average Power Ratio
PAS Power Azimuth Spectrum
PBCH Physical Broadcast Channel

PBR Prioritized Bit Rate
PBX Private Branch Exchange

PC Power Control

PCC Policy and Charging Control
PCC Primary Component Carrier
PCCH Paging Control Channel

PCEF Policy and Charging Enforcement Function
PCEP Policy and Charging Enforcement Point

PCH Paging Channel PCI Physical Cell Identifier

PCRF Policy and Charging Rules Function
P-CSCF Proxy Call State Control Function