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PREFACE -

The name “real analysis” is something of an anachronism. Originally applied
to the theory of functions of one and several real variables, it has come to
encompass several subjects of a more general and abstract nature that underlie
much of modern analysis. These general theories and their applications are the
subject of this book, which is intended primarily as a text for a graduate-level
analysis course. Chapters 1 through 7 are devoted to the core material from
measure and integration theory, point set topology, and functional analysis
which is a part of most graduate curricula in mathematics, together with a few
related but less standard items with which 1 think all analysts should be
acquainted. The last three chapters contain a variety of topics that are meant
to introduce some of the other branches of analysis and to illustrate the uses of
the preceding material. I believe these topics are all interesting and important,
but their selection in preference to others is largely a matter of personal
predilection.

The things one needs to know in order to read this book are as follows. (1)
First and foremost, the classical theory of functions of real variable: limits and
continuity, differentiation and (Riemann) integration, infinite series, uniform
convergence, the notion of a metric space. (2) The arithmetic of complex
numbers and the basic properties of the complex exponential function e** " =
e*(cos y + isin y). (Results from more advanced complex function theory are
used only in the proof of the Riesz—Thorin theorem and in a few exercises and
remarks.) (3) Some elementary set theory. (4) A bit of linear algebra—actually,
not much beyond the definitions of vector spaces, linear mappings, and
determinants. All of the necessary material in (1) and (2) can be found, for
example, in W. Rudin’s Principles of Mathematical Analysis (3rd “ed.,
McGraw-Hill, New York, 1976), or T. M. Apostol’'s Mathematical Analysis
(2nd ed., Addison-Wesley, Reading, Mass., 1974). A summary of the relevant
facts about sets and metric spaces is provided here in the Prologue. The reader
should begin this book by examining Sections 1 and 5 of the Prologue to
become familiar with my notation and terminology; the rest of the Prologue
can then be referred to as needed.

. vid
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Each chapter concludes with a section entitled “Notes and References.”
These sections contain miscellaneous remarks, acknowledgments of sources,
indications of results not discussed in the text, references for further reading,
and historical notes. The latter are quite sketchy, although references to more
detailed sources are provided; they are intended mainly to give an idea of how
the subject grew out of its classical origins. I found it entertaining and
instructive to read some of the original papers and monographs, and I hope to
encourage others to do the same.

A sizable portion of this book is devoted to exercises, which are mostly in
the form of assertions to be proved and which range from trivial to difficult.
Every reader should peruse them, although only the most ambitious will try to
work them all out. They serve several purposes: amplification of results and
completion of proofs in the text, discussion of examples and counterexamples,
applications of theorems, and development of further ideas. Instructors will
probably wish to do some of the exercises in class$; to maximize flexibility and
minimize verbosity, I have followed the principle of “when in doubt, leave it as
an exercise.” Exercises occur at the end of each section, but they are numbered
consecutively within each chapter. In referring to them, “Exercise n” means
the nth exercise in the present chapter, while “Exercise m.n” means the nth
exercise in Chapter m. (The same numbering system is used for sections of
chapters).

The topics in the book are arranged so as to allow some flexibility of
presentation. For example, Chapters 4 and 5 do not depend on Chapters 1-3
except for a few examples and exercises. On the other hand, if one wishes to
proceed quickly to L? theory, one can skip from Section 3.3 to Sections 5.1
and 5.2 and thence to Chapter 6. The last three chapters are independent of
each other, except that the material in Section 8.8 is used in Chapter 9.

The writer of a text on such a well-developed subject as real analysis must
necessarily be indebted to his predecessors. I kept a large supply of books on
hand while writing this one; they are too numerous to list here, but most of
them can be found in the bibliography. I am also happy to acknowledge the
influence of two of my teachers: Lynn Loomis, from whose lectures I first
learned this subject, and Elias Stein, who has done much to shape my point of
view. Finally, I wish to thank my colleagues Edwin Hewitt, Isaac Namioka,
Scott Osborne, and Garth Warner for many helpful discussions.

The final draft of this book was written on a VAX 11/750 with the
EQN[TROFF text-formatting programs. I am grateful to the people at Bell
Laboratories for developing this fine software and to David Ragozin and
Douglas Lind for helping me learn how to use it.

GERALD B. FOLLAND

Seattle, Washington
. August 1984



GUIDE TO NOTATION

Abstract vector spaces: L(%,%) (bounded linear maps), 145. 2 * (dual space),
148.

Analysis on Euclidean space: f(x*) (one-sided limits), 32. x’y (dot product),
226. 3%, x°, a!, |a| (multiindex notation), 227. T" (n-torus), 229.

Functions and operations on functions: f*, f~ (positive and negative parts),
45. sgn, 45. x (characteristic function), 45. f, f” (sections), 63. T, 76.
supp(f) (support), 125. A, (distributiorr function), 189. f” (translation), 228.
f * g (convolution), 230. f, (dilation), 233. f, #f (Fourier transform), 240. f
(inverse Fourier transform), 243. ( f, @), 258. f (reflection), 259.

Integrals: The basic notation is developed in Section 2.2. [f(x)dx
(Lebesgue integral), 56, 68. [[fdpdv (interated integral), 66. [gdF (Stieltjes
integral), 99. :

Measures: pr, 34. m, m" (Lebesgue measure), 37, 68. u X » (product), 62. ¢ °
(surface measure on sphere), 74. »*, v~ (positive and negative variations), 82.
|v| (total variation), 82, 88. p L » (mutual singularity), 82. p << » (absolute
continuity), 83. fdu, 84. dp/dv (Radon-Nikodym derivative), 85. p X »
(Radon product), 221. p * » (convolution), 281.

Norms and seminorms: || f||, (uniform norm), 115. ||T|| (operator norm),
145. ||fll, (L? norm), 173, 176. [f], (weak L” quasi norm), 191. ||p||
(measure norm), 216. || f||;, (Sobolev norm), 268. -

Probability theory: E(X) (expectation), 287. o(X) (standard deviation),
287. o*( X) (variance), 287. P, (image measure, distribution), 287. »; * (normal
distribution), 298.

Sets: card(X), 6. ¢ (cardinality of the continuum), 8. F,, F 4, G;, Gs,, 21.
E., E” (sections), 63.

a-algebras: M (&) (o-algebra generated by &), 21. %, (Borel sets), 21.
®ue M, H®AN (products), 22. &, " (Lebesgue measurable sets), 37,
68. #% (Baire sets), 208. .

Spaces of functions, measures, and distributions:. L*, 47. L', 52. L4} 90. BV,
97. NBV, 98. C(X,Y), 113. B(X,R), 114. BC(X,R), 115. B(X), 115. C(X),
115. BC(X), 115. C.(X), 125. Cy( X), 126. L?, 164,173. [, 169, 173. L?, 173,

xiii



xiv . . GUIDE TO NOTATION

176. 17, 173. weak L7, 191. M(X), 216. C*, 226. C*, 226. C=, 226. &, 227.
&', 258. 9',262. &', 263. H,, 268. H!*=, 271.

Note: For the basic notation used throughout the book for sets, numbers,
and metric and topological spaces see Sections 1, 5, and 6 of the Prologue, and
Section 4.1. Notation used only in the section in which it is introduced is, for
the most part, not listed here.
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PROLOGUE

The purpose of this introductory chapter is- to establish the notation and
terminology that will be used throughout the book and to present a few diverse
results from set theory and analysis that will be needed later. The style here is
deliberately terse, since this chapter is intended as a reference rather than a
systematic exposition. '

1. THE LANGUAGE OF SET THEORY

It is assumed that the reader is familiar with the basic concepts of set theory;
the following brief discussion is meant mainly to fix our terminology.

Logic. We shall avoid the use of special symbols from mathematical logic,
preferring to remain reasonably close to standard English. We shall, however,
use the abbreviation iff for “if and only if.”

One point of elementary logic that is often insufficiently appreciated by
students is the following. If 4 and B are mathematical assertions and — 4, — B
are their negations, the statement “A implies B” is logically equivalent to “— B
implies —A.” Thus one may prove that A implies B by assuming — B and
deducing — A, and we shall frequently do so. This is not the same as reductio
ad absurdum, which consists of assuming both 4 and —B and deducing an
absurdity. . :

Number Systems. Our notation for the fundamental number systems is as
follows:

N-= the set of positive integers (not including zero)
Z = the set of integers

Q = the set of rational numbers

R = the set of real numbers

C = the set of complex numbers
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Sets. The words “family” and “collection” will be used synonymously
with “set,” usually to avoid phrases like “set of sets.” The empty set is denoted
by @, and the family of all subsets of a set X is denoted by #( X):

#(X)=(E: Ec X},

Here and elsewhere, the inclusion sign C is interpreted in the weak sense;
that is, the assertion “E C X ” includes the possibility that E = X.

If & is a family of sets, we can form the union and intersection of its
members:

UE={x:x€EforsomeE €&},
Eee

MNE={x:x€EforeveryEE€&}.
Eee

Usually it is more convenient to consider indexed families of sets:

= {E;acd)~ [E)

a€A*

in which case the union and intersection ar: denoted by

U Ea’ n Ea‘

a€A aE€A
If E, N E; = @ whenever a # B, the sets E, are called disjoint. The terms
“disjoint collection of sets” and “collection of disjoint sets™ are used inter-

changeably, as are “disjoint union of sets” and “union of disjoint sets.”
When considering families of sets indexed by N, our usual notation will be

{E.}ier or {E, T,

and likewise for unions and intersections. In this situation, the notions of limit
superior and limit inferior are sometimes useful:

. o0 oo oC oQ
limsupE, = (| U E,, liminfE, = |J N E,.

k=t n=% k=1 n=k
The reader may verify that
limsupE, = {x: x € E, for infinitely many » },,

liminf E, = {x: x € E, for all but finitely many n }.
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If E and F are sets, we denote their difference by E \ F:
E\F={(x:x€Eand x & F},
and their symmetric difference by EAF:
EAF = (E\F) U('E\E).

When it is clearly understood that all sets in question are subsets of a fixed set
X, we define the complement E° of a set E (in X):

E¢= X\E.

In this situation we have deMorgan’s laws:

c c :
(UE)-nEe (NE)-UE:
a€A a€A a€A a€A
If X and Y are sets, their Cartesian product X X Y is the set of all ordered
pairs (x, y) such that x € X and y € Y. A relation from X to Y is a subset of
X X Y. (If Y=X, we speak of a relation on X.) If R is a relation from X to

Y, we shall sometimes write xRy to mean that (x, y) € R. The most important
types of relations are the following:

(1) Equivalence relations. An equivalence relation on X is a relation R on
X such that xRx for all x, xRy iff yRx, and xRz whenever xRy and
YRz for some y. The equivalence class of x € X is { y € X: xRy}; X
is the disjoint union of these equivalence classes.

(i1) Orderings. See Section 2.

(iii) Mappings. A mapping f/: X — Y is a relation R from X to Y with the
property that for every x € X there is a unique y € Y such that xRy,
in which case we write y = f(x). Mappings are sometimes called maps
or functions; we shall generally reserve the latter name for the case
when Y is C or some subset thereof.

If f: X—> Y and g Y — Z are mappings, we denote by geo f their
composition:

gefi X2, geof(x)=g(f(x)).

If D < Xand E C Y, we define the image of D and the inverse image of E
under a mapping f: X — Y by

f(D)-—={f(x):_xE'D}. FYE)={x: f(x)€ E}.

It is easily verified that the map [ ': 2(Y) — 2(X) defined by the second
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formula commutes with unions, intersections, and complements:

r(UE)=Uri)

ac€A a€A
(8- 0

fUE) = (fHE))".

[The direct image mapping f: #(X) — £(Y) commutes with unions, but in
general not with intersections and complements.]

If f: X — Y is a wnapping, X is called the domain of f and f(X) is called
the range of f. f is said to be injective if f(x,) = f(x,) only when x, = x,,
surjective if f(X) = Y, and bijective if it is both injective and surjective. If f is
bijective, it has an inverse f~': Y — X such that f'o f and feo f~! are the
identity mappings on X and Y. If 4 C X, we denote by f|A the restriction of f
to A:

(f14): 4 =Y,  (fl4)(x) =f(x) forxe€ 4.

A sequence in a set X is a mapping from N into X. (We also use the term
finite sequence to mean a map from {1,...,n} into X where n € N.) If f:
N — X is a sequence and g: N — N satisfies g(n) < g(m) whenever n < m,
the composition f g is called a subsequence of f. It is common, and usually
convenient, to be careless about distinguishing between sequences and their
ranges, which are subsets of X indexed by N. Thus, if f(n) = x,, we speak of
the sequence { x, }7; whether we mean a mapping from N to X or a subset of
X will be clear from the context.

Earlier we defined the Cartesian product of two sets. Similarly one can
define the Cartesian product of n sets in terms of ordered n-tuples. However,
this definition becomes awkward for infinite families of sets, so the following
approach is used instead. If {X,},c, is an indexed family of sets, their
Cartesian product [1, . , X, is the set of all maps f: 4 - U, ,X, such that
f(a) € X, for every a € A. (It should be noted, and then promptly forgotten,
that when 4 = (1,2}, the previous definition of X, X X, is set-theoretically
different from the present definition of I'llsz Indeed, the latter concept
depends on mappings, which are defined in terms of the former one.) If
X=1I1,e4X, and a € A, we define the ath projection or coordinate map :
X - X, by m,(f)=f(a). We also frequently write x and x_, instead of f and
f(a) and call x, the ath coordinate of x.

If the sets X are all equal to some fixed set Y, then I, . , X, is simply the
set of all mappings from A into Y, and it is denoted by Y4. If 4 = {1,...,n},
Y4 is denoted by Y” and may be identified with the set of ordered n-tuples of
elements of Y.
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2. ORDERINGS

A partial ordering on a nonempty set X is a relation R on X such that (i) if
xRy and yR:z then xRz; (ii) if xRy and yRx then x = y; and (iii) xRx for all
x. If R also satisfies (iv) if x, y € X then either xRy or yRx, then R is called a
linear (or total) ordering. For example, if E is any set then #(E) is partially
ordered by inclusion, and R is linearly ordered by its usual ordering. Taking
this last example as a model, we shall usually denote partial orderings by <,
and we write x < y to mean that x < y and x # y. We observe that a partial
ordering on X paturally induces a partial ordering on every nonempty subset
of X. Two partially ordered sets X and Y are said to be order isomorphic if
there is a bijection f: X — Y such that x; < x, iff f(x;) < f(x3).
. If X is partially ordered by <, a maximal (minimal) element of X is an
element x € X such that the only y € X satisfying x <y (» < x) is x itself.

Maximal and minimal elements may or may not exist, and they need not be
unique unless the ordering is linear. If E C X, an upper (lower) bound for E is
an element x € X such that y < x"(x < y) forall y € E. An upper bound for
E need not be an element of E, and the reader should verify that unless E is
linearly ordered, a maximal element of E need not be an upper bound for E.

If X is linearly ordered by < and every nonempty subset of X has a
(necessarily unique) minimal element, X is said to be well ordered by <, and,
in defiance of the laws of grammar, < is called a well ordering on X. For
example, N is well ordered by its natural ordering.

We now state a fundamental principle of set theory and derive some
consequences of it.

(P.1) The Hausdorffl Maximal Principle. Every partially ordered set has a
maximal linearly ordered subset.

In more detail, this means that if X is partially ordered by <, there is a set
E c X which is linearly ordered by <, such that no subset of X which
properly includes E is linearly ordered by <. Another version of this
principle is the following:

(P.2) Zorn’s Lemma. If X is a partiall); ordered set and every linearly
ordered subset of X has an upper bound, then X has a maximal element.

Clearly (P.1) implies (P.2): an upper bound for a maximal linearly ordered
subset of x is a maximal element of X. It is also not difficult to see that (P.2)
implies (P.1). [Apply (P.2) to the collection of linearly ordered subsets of X,
which is partially ordered by inclusion.]

(P.3) The Well Ordering Principle. Every nonempty set X can be well
ordered. ‘
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Proof. Consider the collection #” of well orderings of subsets of X. Such
well orderings may be regarded as subsets of X X X, so %" is partially ordered
by inclusion. It is easy to verify that the hypotheses of Zorn’s lemma are
satisfied, so #~ has a maximal element. This must be a well ordering of X
itself, for if < is a well ordering on a proper subset E of X and x, € X\ E,
< can be extended to a well ordering on E U {x,} by declaring that x, < x
forall x € E. u|

(P.4) The Axiom of Choice. If {X,},c, is a nonempty collection of
nonempty sets, then 1, . , X, is nonempty.

Proof. Let X =U,. ,X,. Pick a well ordering on X and, for a € 4, let
f(a) be the minimal element of X, Then f €1, , X,. O

(P.5) Corollary. If { X,},c , is a disjoint collection of nonempty sets, there
is a set Y < U, ,X, such that Y N X, contains precisely one element for
every a € A.

Proof. Take Y = f(A) where f € I, ,X,. )

We have deduced the axiom of choice from the Hausdorfl maximal princi-
ple; in fact, the two are known to be logically equivalent.

3. CARDINALITY

If Xand Y are: nonempty sets, we define the formulas
card( X) < card(Y), card( X) = card(Y), card( X) > card(Y)

to mean that there exists f: X — Y which is injective, bijective, or surjective,
respectively. We also define

*  card(X) <card(Y), card(X) > card(Y)

to mean that there is an injection but no bijection, or a surjection but no
bijection, from X to Y. Observe that we attach no meaning to the expression
“card( X)” when it stands alone; there are various ways of doing so, but they
are irrelevant for our purposes (except when X is finite—see below). These
relationships can be extended to the empty set by declaring that

card(@) <card( X) and card(X) > card(@) forall X # @.

For the remainder of this section we assume implicitly that all sets in question
are nonempty in order to avoid special arguments for &. Our first task is to
prove that the relationships defined above enjoy the properties which the
notation suggests.
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(P.6) Proposition. card(X) < card(Y) iff card(Y) > card( X).

Proof. If f: X — Y is injective, pick x, € X and define g: Y = X by
g(y)=fYp)if y € f(X), g(y) = x, otherwise. Then g is surjective. Con-
versely, if g: Y — X is surjective, the sets g '({x}) (x € X) are nonempty
and disjoint, so any f € I1, < yg~ ({x}) is an injection from X to Y. O

(P.7) Proposition. For any sets X and Y, cither card(X) < card(Y) or
card(Y) < card( X).

Proof. Consider the set # of all injections from subsets of X into Y. ’I'he
members of # can be regarded as subsets of X X Y, so # is partially-ordered
by inclusion. It is easily verified that Zorn’s lemma applies, so J has a
maximal element f, with (say) domain A4 and range B. If x; € X\ 4 and
Jo € Y\ B, then f can be extended to an injection from A4 U {x,} to
B U {y,} by setting f(x4) = y, contradicting maximality. Hence either 4 =
X, in which case card(X) < card(Y), or B =Y, in which case /! is an
injection from Y to X and card(Y') < card( X). O

(P.8) The Schroder-Bernstein Theorem. If card(X) < card(Y) and
card(Y) < card( X), then card( X') = card(Y).

Proof. Let f: X— Y and g Y — X be injections. Consider a point
x € X: if x € range(g) we form g~!(x) € Y; if g~ !(x) € range(f) we form
f g '(x)) € X; and so forth. Either this process can be continued indefin-
itely, or it terminates with an element of X \ range(g) (perhaps x itself), or it
terminates with an element of Y \ range( /). In these three cases we say that x
isin X_, Xy, or Xy: thus X is the disjoint union of X_, Xy, and X;. In the
same way, Y is the disjoint union of three sets Y, Y, and Y. Clearly f maps
X, onto Y and X, onto Y, whereas g maps Yy onto X,. Therefore, if we
define h: X - Y by h(x)=f(x) if x € X, U Xy and h(x)=g '(x) if
X € Xy, then h is buecuve O

(P.9) Proposition. For any set X, card( X) < card(£(X)).

Proof. Given f: X > P(X), let Y={x€ X: x & f(x)}. Then Y &
range( f), for if Y = f(x,) for some x, € X, any attempt to answer the
- question “is x, € Y?” quickly leads to-an absurdity. Hence no map from X to
P( X) can be surjective. 0O

A set X is called countable if card( X) < card(N). In particular, all finite
sets are countable, and for these it is convenient to interpret “card( X)” as the
number of elements in X:

card(X) =n iffcard(X) = card({1,...,n}).



