
RAMÓN M. CERDA

Understanding Quartz Crystals and Oscillators

Ramón M. Cerda

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

Cover design by Igor Valdman

ISBN 13: 978-1-60807-118-0

© 2014 ARTECH HOUSE 685 Canton Street Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

10987654321

Understanding Quartz Crystals and Oscillators

For a complete listing of titles in the Artech House Microwave Library, turn to the back of this book.

此为试读,需要完整PDF请访问: www.ertongbook.com

Preface

Practicing and new engineers faced with the task of specifying a quartz crystal or even designing a simple crystal oscillator may be in the dark on how to accomplish the task. Crystal oscillators are considered by some to be black magic, like RF. If you were one of those fortunate engineers who took a course in college on crystal oscillators, it was either so theoretical or so cookbook that it was useless to the practicing engineer. Frustrated with this situation, you try to find textbooks with concise and reliable design information, but can't find any. I also could not find many understandable texts as a practicing engineer. Sure, there are some very good textbooks for the hardcore oscillator design engineer (i.e., Parzen and Bottom), but in contrast to these advanced texts, this book offers a complete introduction to the subject matter. The goal of the author is to present the practicing and new engineer with comprehensible material about quartz crystals and oscillators to demystify the field.

Although this book is an introduction to the frequency control field, it does include advance subjects on the crystal resonator (Chapter 3) and quartz crystal oscillator design (Chapters 9, 10, and 11). Chapter 6 introduces the newcomer to oscillator theory using three different analysis techniques. Specifying the crystal unit in great detail is covered in Chapters 2 and 5. The specifying crystal oscillator is covered in Chapter 8. Phase noise and jitter are introduced in Chapter 7.

Acknowledgments

This humble author would like to personally thank:

- Agilent Technologies for lending me the entire GENESYS software suite (all the schematics and simulations in this book were done using GENE-SYS.
- PTC for lending me MathCad Prime 2 and MathCad 15.
- John R. Vig for all his work done over the years in the field of frequency control and for his drawings that were used directly or with minor modifications to illustrate many of the subjects covered in this book.
- Wally Galla and Ralph Peduto, who both passed away a few years ago.
 Wally and Ralph were former colleagues who were great people and excellent crystal oscillator design engineers.
- My present employer, Crystek Crystals Corporation, for the opportunity to create and design my true passion, crystal oscillators.

On the lighter side, I would like to thank all my friends at the Boulevard Tavern and the World Famous Cigar Bar in Fort Myers, Florida, for all their encouragement in this four-year endeavor. Last, but not least, I would like to give a special thank you to Jack Battaglia for all his life advice. Thank you all!

Contents

	Preface	ххі
	Acknowledgments	xxiil
1	Quartz Crystals	1
1.1	Introduction	1
1.2	Mother Nature Used Quartz First	2
1.3	The Curie Brothers	3
1.4	Piezoelectricity	3
1.5	Quartz	4
1.6	Left-Handed and Right-Handed Quartz	5
1.7	Quartz Is Anisotropic	5
1.8	A Timeline of Quartz Crystals and Oscillators	6
1.9	Important Definitions	7
1.9.1	Time	7
1.9.2	Second	7
1.9.3	Frequency	8
1.9.4	Nominal Frequency	8
1.9.5	Clock	9

1.9.6	Room Frequency or 25°C Frequency	9
1.9.7	Fractional Frequency	9
1.9.8	Allan Deviation	10
1.9.9	Accuracy, Precision, and Stability	10
1.9.10	Accuracy	10
1.9.11	Precision	12
1.9.12	Stability	12
1.9.13	Frequency Stability	12
1.9.14	Short-Term Frequency Stability	12
1.9.15	Medium-Term Frequency Stability	12
1.9.16	Long-Term Frequency Stability	12
1.9.17	Aging and Drift	12
1.9.18	Ambient Temperature	13
1.9.19	Frequency-Temperature Stability (Frequency	
	Versus Temperature Stability)	13
1.9.20	Tolerance	13
1.9.21	Calibration	13
1.9.22	Jitter	13
1.9.23	Oscillator	14
1.9.24	Phase Shift	14
1.9.25	Phase Noise	14
1.9.26	Resonance	14
1.9.27	Resonance Frequency	14
1.9.28	Quality Factor, Q	14
1.9.29	Resonator	14
1.9.30	Quartz Crystal	15
1.9.31	Quartz Crystal Oscillator	15
1.9.32	Random Deviations	15
1.9.33	Systematic/Deterministic Deviations	15
1.9.34	Uncertainty	15
1.10	Frequency Stability in Perspective	15
1.11	Growing Quartz	15
1.12	Swept Quartz	17
1.13	A Crystal Is Born	18
1.14	Inside the Crystal Unit	19
1.14.1	The Glass Seals	20
1.14.2	The Conductive Epoxy Cement	20
1.15	Sealing the Crystal Unit	21

Contents		

ix

1.15.1 1.15.2 1.15.3 1.15.4 1.15.5	Solder Seal Resistance Weld Cold Weld Seam Weld Epoxy Seal	21 21 21 21 22
1.16	Testing for Moisture	22
1.17	Crystal Resonator Mechanical Equivalent Model	22
1.18	Crystal Resonator Electrical Equivalent Circuit	22
1.19	Derivation of Equivalent Circuit Equations	24
1.20 1.20.1	Series-Resonant and Parallel-Resonant Oscillators Definitions of Series and Parallel Crystals	26 26
1.21	Load Capacitance	27
1.22	Fundamental Mode Crystals	28
1.23	Overtone Mode Crystals	28
1.24	Spurious Modes	29
1.25	Expanded Quartz Resonator Equivalent Circuit Model	29
1.26	The Ideal Phase Angle of the Quartz Crystal Resonator	30
1.27	Pulling the Crystal Frequency by Changing the Load Capacitance	31
1.28	Zero-to-Pole Spacing	33
1.29	Trim Sensitivity	34
1.30	Important Unitless Quantities	37
1.31	Resistance of the Crystal Above Series Resonance (ESR) References	38 39
2	Quartz Crystal Characteristics	41
2.1	Introduction	41
2.2	Defining the Frequency Versus Temperature Curve	41

2.3	Quartz Crystal Cuts	42
2.3.1	The AT, BT, and SC Cuts	42
2.4	Temperature Characteristics of AT Cut, BT Cut,	
	and SC Cut	43
2.4.1	AT-Cut Frequency-Temperature Curves	43
2.4.2	BT-Cut Frequency-Temperature Curves	43
2.4.3	SC-Cut Frequency-Temperature Curves	43
2.5	Thickness Versus Frequency of Quartz Wafers (Blanks)	45
2.6	Bechmann Frequency-Temperature Curves	47
2.7	AT Cut Versus SC Cut	49
2.7.1	AT-Cut Versus SC-Cut Pros and Cons	49
2.8	The SC-Cut B-Mode Temperature Characteristic	50
2.9	Vibrational Displacements of AT Versus SC Cuts	51
2.10	Drive Level	52
2.10.1	High Drive Level	52
2.10.2	Low Drive Level	52
2.10.3	Correlation Drive Level	53
2.10.4	Maximum Drive Level	53
2.11	Drive Level Dependence (DLD) or Drive Level	
	Sensitivity (DLS)	54
2.12	Aging	54
2.13	How Drive Level Affects Aging	55
2.14	Activity Dips	56
2.15	Sleepy Crystals Phenomenon	57
2.16	Specifying Crystals	58
2.16.1	Specifying the Nominal Frequency	59
2.16.2	Specifying the "Mode" of Operation	59
2.16.3	Specifying a Fundamental Crystal	60
2.16.4	Specifying an Overtone Crystal	60
2.16.5	Specifying a Parallel or Series-Resonant Crystal and	10
	Load Capacitance	60
2 16 6	Specifying the Crystal's Resistance	60

Contents xi

2.16.7	Specifying an AT-Cut Crystal	60
2.16.8	Specifying a BT-Cut Crystal	61
2.16.9	Specifying an SC-Cut Crystal	61
2.16.10	Specifying the Frequency Calibration (Tolerance)	61
2.16.11	Specifying the Frequency-Temperature Stability	61
2.16.12	Specifying the Operating Temperature Range	62
2.16.13	Specifying the Shunt Capacitance, C_0	62
2.16.14	Specifying the Aging Rate	63
2.16.15	Specifying an Overall Accuracy	63
2.16.16	Specifying the Trim Sensitivity	63
2.16.17	Specifying a Pullable Crystal ("Pullability")	64
2.16.18	Specifying the Drive Level	64
2.16.19	Specifying Drive Level Dependence (DLD)	65
2.16.20	Specifying Spurious Responses	65
2.16.21	Specifying the Quality Factor Q	66
2.16.22	Specifying the Motional Inductance, L_1	67
2.16.23	Specifying Inverted Mesa Crystals	67
2.16.24	Specifying a Tuning Fork Crystal	68
2.16.25	Specifying Strip Crystals	70
2.16.26	Specifying Mechanical Shock Resistance	71
2.17	Crystal Unit Handling Precautions	71
2.17.1	High-Temperature Storage Precautions	71
2.17.2	Electrostatic Discharge (ESD) Precautions	71
2.18	Crystal Specification Template	72
	References	73
3	Advanced Quartz Crystal Resonator Topics	75
		/3
3.1	Introduction	75
3.2	Flicker Noise	75
3.3	Introduction to Fluctuation Equations	76
3.4	Quartz Resonator Flicker Noise Model	77
3.5	Quartz Resonator Drive Level Sensitivity	80
3.6	Resonator Q and 1/f Noise Versus Drive Level	82
3.6.1	1/f Flicker Noise Versus Drive Level	82
3.6.2	Resonator Q Versus Drive Level	83
		05
3.6.3	Resonator Q Versus Manufacturing Defects	83

3.7	The Effect of Acceleration on Quartz Resonators	84
3.7.1	Gravitational Acceleration	85
3.7.2	Sinusoidal Acceleration/Vibration	85
3.7.3	Random Acceleration/Vibration	80
3.8	Drive Level Dependency Testing	89
	References	89
4	MEMS Resonators and Oscillators	91
4.1	Introduction	91
4.2	Some MEMS Terminology	92
4.2.1	Electromechanical Systems	92
4.3	MEMS Resonators	93
4.3.1	Quartz MEMS (QMEMS)	94
4.3.2	MEMS Resonator Equivalent Circuit Model	94
4.3.3 4.3.4	Frequency-Temperature Performance of MEMS Phase Noise and Jitter Performance of MEMS	95
	Oscillators	96
4.4	MEMS Oscillators Versus Quartz Oscillators	97
4.4.1 4.4.2	Performance Claims/Reports from MEMS Vendors Present Challenges Facing Commodity MEMS	98
	Oscillators	99
	References	100
5	Choosing the Correct Crystal for the Application	103
5.1	Introduction	103
5.2	Choosing the Correct Crystal for a Low-Cost CLOCK	103
5.2.1	Selecting the Nominal Frequency of Operation	105
5.2.2	Selecting the Type of Cut (AT, BT, or SC Cut)	105
5.2.3	Selecting the Load Capacitance	106
5.2.4	Determining the Maximum ESR Value	108
5.2.5	Determining If the Feedback Resistor Is Built In	110
5.2.6	Frequency-Temperature Stability	110
5.2.7	Calibration Tolerance	110
5.3	Choosing the Correct Crystal for a VCXO	111
5.3.1	Changing/Varying the Load Capacitance	112