高职高专教育"十三五"规划教材

主 编 邓 光 徐辉军

高职高专教育"十三五"规划教材

数学应用技术

◎主编 邓光 徐辉军

内容提要

本书于 2007 年被确定为江苏省高校立项精品教材,2011 年被评为江苏省高校精品教材.

全书内容分基础模块、专业模块和拓展模块三大部分,主要介绍了预备知识、极限与连续、导数与微分 及其应用、积分及其应用、向量代数与空间解析几何、多元函数微积分及其应用、无穷级数及其应用、常微分 方程及其应用、线性代数及其应用、概率统计及其应用以及数学建模等数学基础知识与理论、基本应用与方 法等内容.本书以应用为目的,重视数学背景的介绍、数学概念的建立、数学应用能力的培养和数学文化的 熏陶,将 Matlab 软件作为辅助工具融入教材,每章配有相关的实际应用案例、数学实验、习题、名人名言及 阅读材料.

本书适用作高职高专工科、经管类专业数学公共基础课教学用书,也可作为专科层次成人教育、自学考 试等参考资料.

图书在版编目(CIP)数据

数学应用技术 / 邓光,徐辉军主编. -- 上海: 同济大 学出版社, 2017.7 ISBN 978-7-5608-7143-1

I. ①数··· Ⅱ. ①邓··· ②徐··· Ⅲ. ①高等数学— 高等职业教育—教材 Ⅳ. ①O13

中国版本图书馆 CIP 数据核字(2017)第 157234 号

高职高专教育"十三五"规划教材

数学应用技术

主编 邓 光 徐辉军

责任编辑 陈佳蔚 责任校对 除春莲 封面设计 潘向蓁

出版发行		同济大学出版社 www.tongjipress.com.cn
		(地址:上海市四平路 1239 号 邮编:200092 电话:021-65985622)
经销	誚	全国各地新华书店
印刷	副	常熟市大宏印刷有限公司
开 7	本	$787 \text{ mm} \times 1092 \text{ mm} 1/16$
印 引	胀	25. 25
字 数	数	630 000
印数	数	1-4 100
版 2	欠	2017 年 7 月第 1 版 2017 年 7 月第 1 次印刷
书号	号	ISBN 978-7-5608-7143-1

定价 49.00 元

本书若有印装质量问题,请向本社发行部调换 版权所有 侵权必究

前 言

本书是按照教育部《高职高专教育数学课程教学基本要求》,针对高等职业教育"高素质 技术技能人才"的培养目标,结合当前高等职业教育专业建设与课程改革的发展趋势编写 的.本书将传统高等教育中的高等数学与工程数学融为一体,保持内容体系的完整性.同时, 在内容处理上,对一些抽象的理论性定义和证明,尽可能简略;对一些与专业学习、实际应用 密切联系的内容与方法,则尽可能详细.

作为 2007 年江苏省高校立项精品教材,本书先后由河海大学生出版社、电子科技大学 出版社、化学工业出版社分别于 2007 年、2010 年和 2011 年出版过三次.此次修订,我们将 Matlab 软件作为辅助工具融入教材,对教材章节结构、部分内容进行了调整和完善,补充增 加了部分案例和习题,使教材整体更加丰满,并力求体现如下特点:

 适应专业调整,重新审定教材内容.以"必需够用"为度,选择教材内容,满足各专业 发展需求,丰富模块化体系,强化服务专业的功能.

 注重中高职、普职课程的衔接.适当降低难度,满足多元化的教学需求,内容编排由 浅入深循序渐进,注重有效衔接,增加必要的预备知识.

3. 体现数学实用性、工具性和针对性.选择紧密结合专业的案例资源,增加联系实际的 背景资料和数学模型,将 Matlab 软件作为辅助工具融入教材,力求提供一套解决实际问题 整体方案.

强调育人功能,提高学生数学素养.数学是工具,用于交流的语言,更是一种文化,必要增加数学文化的介绍,体现通识必修课的文化功能.

学期 安排		学习任务	组合1 化工类	组合 2 机械类	组合3 电子类	组合 4 土建类	组合 5 经管类
第一学期	基础模块	1. 预备知识	4	4	4	4	4
		2. 极限与连续	12	12	12	12	12
		3. 导数与微分	12	12	12	12	12
		4. 导数与微分的应用	6	8	8	8	8
		5. 积分	12	12	12	12	12
		6. 积分的应用	6	8	8	8	8

分专业的模块组合与教学时序建议

(续表)

学期 安排		学习任务	组合1 化工类	组合 2 机械类	组合3 电子类		组合 5 经管类
第二学期	专业模块	7. 向量代数与空间解析几何	12	12	12	12	
		8. 多元函数微积分及其应用	12	12	12	12	
		9. 无穷级数及其应用			18		
		10. 常微分方程及其应用		10	10	10	14
		11. 线性代数及其应用	14	18		18	18
		12. 概率统计及其应用	14				20
	拓展 模块	13. 数学建模(选学)					
		合计	104	104	104	104	104

全书分工如下:第7、9、11 和 12 章由邓光负责编写,第1、3、10 章由徐辉军负责编 写,第5、13 章由徐静负责编写,第4、8 章由刘长太负责编写,第2 章由王伟负责编写,第 6 章由耿红梅负责编写.此外,本书在编写过程中,得到许多兄弟院校同行们的支持和帮助,本校各专业系部及数学教研室也给予了大力协助,谨在此表示感谢.

本书可供高职高专高中起点化工、机械、电子、信息、土建及经管等各大类专业选用. 由于编者的水平,教材中如有存在错误或不足之处,敬请读者给予批评和指正.

本书编写组

2017年6月

前言

基础模块

第1章	预备知识	
1.1		
Z	题 1.1	12
1.2	函数的应用	13
Þ	题 1.2	16
1.3	初等代数	
1.4	初等几何	21
1.5	三角公式	
1.6	Matlab 软件简介 ······	
	对料—	
综合	练习一	61
第2章	极限与连续	
2.1	面积问题	
2.2	极限的概念	
シ	题 2.2	
2.3		
$\overline{\mathcal{Y}}$	题 2.3	
2.4		
$\overline{\mathcal{Y}}$	题 2.4	
2.5	两个重要极限	
ス	1题 2.5	
2.6	连续	
シ	题 2.6	
2.7	数学实验	79

阅读材料二	••• 80
综合练习二	••• 81
第3章 导数与微分	••• 83
3.1 斜率及速度问题	••• 84
习题 3.1	••• 86
3.2 导数的概念	••• 86
习题 3.2	••• 90
3.3 导数的运算法则	••• 91
习题 3.3	••• 92
3.4 复合函数求导法则	••• 93
习题 3.4	••• 94
3.5 隐函数、参数方程求导	••• 95
习题 3.5	••• 98
3.6 高阶导数	••• 99
习题 3.6	
3.7 微分	•• 101
习题 3.7	
3.8 数学实验	
阅读材料三······	
综合练习三	•• 106
第4章 导数与微分的应用 ·······	
4.1 中值定理	
习题 4.1	
4.2 洛必达法则	
习题 4.2	
4.3 单调性、极值与最值	
习题 4.3	
4.4 凹凸性、作图	
习题 4.4	
4.5 弧长、曲率	
习题 4.5	
4.6 近似计算、误差估计	
习题 4.6	
4.7 数学实验	
阅读材料四	•• 128

	综合练习四 ••••••	•••••	130
第 5	5 章 积分	•••••	132
	5.1 面积问题	•••••	133
	习题 5.1	•••••	136
	5.2 不定积分的概念	•••••	137
	习题 5.2	•••••	139
	5.3 不定积分的计算	•••••	140
	习题 5.3	•••••	146
	5.4 定积分的概念	•••••	146
	习题 5.4	•••••	150
	5.5 定积分的计算	•••••	151
	习题 5.5	•••••	154
	5.6 数学实验	•••••	155
	阅读材料五		
	综合练习五		
第6	6 章 积分的应用 ······	•••••	161
	6.1 微元法	•••••	162
	6.2 平面图形的面积	•••••	163
	习题 6.2	•••••	166
	6.3 旋转体的体积	•••••	166
	习题 6.3	•••••	168
	6.4 平面曲线的弧长	•••••	168
	习题 6.4	•••••	170
	6.5 变力做功问题	•••••	171
	习题 6.5	•••••	172
	6.6 液体压力问题		179
	0,0 被冲压力问题		112
	习题 6.6		
	习题 6.6	•••••	173
	习题 6.6		173 173
	习题 6.6 ······ 6.7 连续函数的均值 ·····	•••••	173 173 173

专业模块

第7章	向量代数与空间解析几何 ······	179
7.1	空间向量	180

	习题 7.1	• 183
	7.2 向量的运算	• 184
	习题 7.2	• 186
	7.3 空间平面	
	习题 7.3	• 189
	7.4 空间直线	• 189
	习题 7.4	• 193
	7.5 空间二次曲面简介	• 193
	7.6 数学实验	• 196
	阅读材料七	• 197
	综合练习七	• 198
第8	3章 多元函数微积分及其应用 ·······	• 200
	8.1 多元函数	• 201
	习题 8.1	• 204
	8.2 多元函数的偏导数	• 204
	习题 8.2	• 206
	8.3 全微分	• 207
	习题 8.3	• 208
	8.4 复合函数与隐函数的求导	• 208
	习题 8.4	• 210
	8.5 多元函数的极值与最值	• 210
	习题 8.5	• 213
	8.6 偏导数的几何应用	• 214
	习题 8.6	• 215
	8.7 二重积分	• 216
	习题 8.7	• 220
	8.8 二重积分的应用	• 220
	习题 8.8	• 222
	8.9 数学实验	• 222
	阅读材料八	• 224
	综合练习八	• 225

第 9 章 无穷级数及其应用 ·······	····· 228
9.1 常数项级数	····· 229
习题 9.1	····· 233
9.2 幂级数	······ 233

9.3 傅里叶级数	• 238
习题 9.3	
9.4 级数的应用	• 241
习题 9.4	• 243
9.5 数学实验	• 243
阅读材料九	• 246
综合练习九	• 247
第10章 常微分方程及其应用	• 248
10.1 微分方程的数学模型	• 249
10.2 微分方程的概念	• 250
习题 10.2	
10.3 分离变量法、降阶法	• 252
习题 10.3	
10.4 一阶线性微分方程	
习题 10.4	
10.5 二阶线性微分方程	
习题 10.5	
10.6 常微分方程的应用	• 264
习题 10.6	
10.7 数学实验	
阅读材料十	
综合练习十	• 270
第11章 线性代数及其应用	
11.1 《九章算术》方程	
11.2 行列式 ······	• 274
习题 11.2	
11.3 矩阵······	
习题 11.3	• 291
11.4 线性方程组	
习题 11.4	
11.5 线性代数的应用 ······	
习题 11.5	
11.6 数学实验······	
阅读材料十—	• 309

习题 9.2 ------ 238

综合练习十—	
第12章 概率统计及其应用	
12.1 概率及其应用	
习题 12.1	
12.2 随机变量及其分布	321
习题 12.2	
12.3 统计及其应用	336
习题 12.3	
12.4 数学实验	342
阅读材料十二	
综合练习十二	

拓 展 模 块

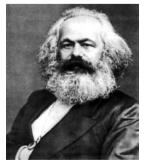
第1	3章	数学建模	•••••	• • • • • • • • • • • • • • •	•••••	•••••	•••••	349
	13.1	数学建模	简介	•••••	•••••	•••••	•••••	350
	13.2	数学建模	举例	• • • • • • • • • • • • • • • • • •	•••••		•••••	350
	13.3	全国大学	生数学建模竞	赛	•••••		•••••	358
	阅读	材料十三…	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •	•••••		•••••	361
附表	ξA	简易积分表	•••••	•••••	•••••	•••••	•••••	364
附表	ξB	分布表	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	•••••		•••••	372
						•••••		
参考	令文献	•••••		• • • • • • • • • • • • • • • • • •	•••••		•••••	394

此为试读,需要完整PDF请访问: www.ertongbook.com

6

第1章 预备知识

1.1 函数
1.2 函数的应用
1.3 初等代数
1.4 初等几何
1.5 三角公式
1.6 Matlab 软件简介
※ 阅读材料一
※ 综合练习一


万事万物都在不停的变化.例如,每天的气 温都会随时间的变化而变化;产品的生产成本会 随产量的增加而增加.作为研究和描述客观世界 的工具,微积分研究的基本对象就是函数.本章 对函数的有关知识做进一步的复习巩固、加深理 解和拓展学习,同时列出了中学数学中初等代 数、初等几何及三角函数的常用公式,另外,为了 能向学生传授一套完整地解决问题的方法,本章 增加了对 Matlab 软件的介绍.

学习要点

- 理解函数的概念,能求函数的定义域、解析式和函数值,会作简单函数的图像.
- 掌握函数的基本性质,能判断函数的单调性、奇偶性、周期性和有界性,掌握基本初等函数.
- 理解复合函数的概念,能熟练的进行复合函数的分解.
- 理解初等函数的概念.
- 掌握常用的函数模型,能根据实际问题建立函数模型.
- 掌握初等代数、初等几何和三角函数的常见公式.
- 掌握 Matlab 软件的基本操作,能利用 Matlab 软件进行简单代数运算.

一种科学只有在成功地运用数学时,才算是达到了真正完善的地步.

----卡尔·马克思

卡尔・马克思(1818—1883) 德国伟大的政治家、哲学家、革命理论家

1.1 函数

1.1.1 常量、变量与增量

1. 常量与变量

在自然现象或技术过程中不起变化或保持一定的数值的量叫做常量. 而在过程中变化 着的或可以取不同数值的量叫做变量.

例如,把一个密闭容器内的气体加热时,气体的体积和气体的分子个数保持一定,它们 是常量;而气体的温度和压力则取得越来越大的数值,所以它们是变量.一个量是常量还是 变量,要根据具体情况作出分析.

常量通常用字母 *a*, *b*, *c*, … 等表示,变量通常用字母 *x*, *y*, *t*, … 等表示. 任何一个变量 总有一定的变化范围,如果变量的变化是连续的,则常用区间来表示变量的变化范围.

2. 变量的增量

设变量 x 从它的初值 x_1 变到终值 x_2 ,终值与初值的差 $x_2 - x_1$ 就叫做变量 x 的增量,记作 Δx ,即

$$\Delta x = x_2 - x_1.$$

增量 Δx 可以是正的,可以是负的,也可以是零. 记号 Δx 并不表示某个量 Δ 与变量 x 的乘积,而是一个整体不可分割的记号.

例如,平面上的动点 P,其起点坐标为(1, -2),终点坐标为(5, 8),那么关于坐标 x, y的增量则分别是 $\Delta x = 5 - 1 = 4$ 和 $\Delta y = 8 - (-2) = 10$.

1.1.2 函数的概念

1. 函数的定义

设 *x* 和 *y* 是两个变量, *D* 是实数集的某个子集, 若对于 *x* 在 *D* 中的每个取值, 变量 *y* 按照 一定的法则或对应关系总有一个确定的值与之对应, 则称变量 *y* 是变量 *x* 的函数, 记作

$$y = f(x)$$

x 叫做自变量,数集 D 叫做函数的定义域,当*x* 取遍 D 中的一切实数值时,与它对应的函数值的集合 M 叫做函数的值域,定义域和对应关系是构成函数的两个要素.

在函数的定义中,并没有要求自变量变化时函数值一定要变,只要求对于自变量 $x \in D$ 都有确定的 $y \in M$ 与它对应.因此,常量 y = C也符合函数的定义,因为当 $x \in \mathbf{R}$ 时,所对应 的 y 值都是确定的常数 C.

2. 函数的符号

 $y \in x$ 的函数可以记作 y = f(x),但在同一个问题中,如果出现几个不同的函数,为区 别起见,可采用不同的函数记号来表示.例如,以x 为自变量的函数可以表示为

① 中国清代数学家李善兰(1811—1882)翻译的《代数学》一书中首次用中文把"function"翻译为"函数",此译名沿用至今.

 $F(x), g(x), \varphi(x), \cdots$

函数 y = f(x) 当 $x = x_0 \in D$ 时,对应的函数值可以记为 $f(x_0)$.

例1 设 $f(x) = \arcsin x$,求 f(0), f(-1), $f\left(\frac{\sqrt{3}}{2}\right)$, $f\left(-\frac{\sqrt{2}}{2}\right)$, f(a).

 $\mathbf{f}(0) = \arcsin 0 = 0,$

 $f(-1) = \arcsin(-1) = -\frac{\pi}{2},$ $f\left(\frac{\sqrt{3}}{2}\right) = \arcsin\frac{\sqrt{3}}{2} = \frac{\pi}{3},$ $f\left(-\frac{\sqrt{2}}{2}\right) = \arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4},$ $f(a) = \arcsin a, \ a \in [-1, 1].$ 例 2 若 $f(x+1) = x^2 + x,$ 来 f(x).

解 令
$$x+1 = u$$
,则 $x = u-1$,

$$f(x+1) = f(u) = (u-1)^2 + (u-1) = u^2 - u + 2$$
,

故 $f(x) = x^2 - x + 2$.

3. 函数的定义域

当我们在研究函数时,必须注意函数的定义域.函数的定义域由函数表达式或函数所涉及的 实际问题来确定.若从函数表达式本身来确定函数的定义域,一般可从以下四个方面考虑:

(1) 在分式中,分母不能为零;

(2) 在根式中,负数不能开偶次方根;

(3) 在对数式、三角函数、反三角函数中,要符合相关函数的定义域;

(4) 函数表达式中有分式、根式、对数式、三角函数式和反三角函数时,我们要取其交集.

例3 求下列函数的定义域.

得

得

$$-4 \leqslant x \leqslant 2$$
.

故该函数的定义域为[-4,2].

函数的定义域可以用区间或集合来表示.

4. 相同函数

两个函数只有当它们的定义域和对应关系完全相同时,这两个函数才被认为是相同的.

例如,函数 $y = x = y = \sqrt[3]{x^3}$,由于它们的定义域和对应关系都相同,所以它们是相同 函数.又如,函数 $y = x = y = \sqrt{x^2}$,虽然定义域相同,但由于对应关系不同,所以它们是不同的函数.

5. 反函数

设有函数 y = f(x),其定义域为 D,值域为 M. 若对于 M 中的每一个 y 值 ($y \in M$),都 可以从 y = f(x)确定唯一的 x 值 ($x \in D$),则根据函数的定义,x 也可以称为是 y 的函数, 叫做函数 y = f(x) 的反函数,记作 $x = f^{-1}(y)$,它的定义域为 M,值域为 D.

习惯上,函数的自变量都用 x 表示,所以,反函数也可表示为 $y = f^{-1}(x)$.

函数 y = f(x) 的图像与其反函数 $y = f^{-1}(x)$ 的图像关于直线 y = x 对称. (想一想:能 否说"函数 y = f(x) 的图像与函数 $x = f^{-1}(y)$ 的图像关于直线 y = x 对称"?)

并不是每一个函数在其定义域上都有反函数.简单地说,反函数存在的条件就是 x 与 y 必须满足——对应的关系.

1.1.3 函数的图像

表示函数通常有公式法、表格法和图像法三种方法.图像法是了解函数基本特征的一种 直观方法.掌握函数图像随函数式而变化的基本规律,对于快速描绘函数图像、了解变量间 的变化规律和函数特征具有重要的意义.例如 $y = x^2$ 的图像及其变化如表 1-1 所示.

函数	图像	函数式变化	图像变化	图像变化特点
$y = x^2$	y y $y=x^2$ (1,1) x	$y = x^2 + 1$	y $y=x^2$ (1, 2) $y=x^2$ (1, 2)	将函数 $y = x^2$ 的图像沿 y 轴方 向整体向上平移 1 个单位
		$y = x^2 - 1$	略	略
		$y = (x+1)^2$	y $y=x^2$ (0, 1) x	将函数 y = x ² 的图像沿 x 轴方 向整体向左平移 1 个单位
		$y = (x-1)^2$	略	略
		$y = 2x^{2}$	$\begin{array}{c c} y \\ y \\(1,2) \\ \vdots \\ y \\ 0 \end{array}$	将函数 $y = x^2$ 的图像每个横坐 标所对应的纵坐标扩大为原来 的 2 倍
		$y = \frac{1}{2}x^2$	略	略

表 1-1

此为试读,需要完整PDF请访问: www.ertongbook.com