PROGRAM
L OGIC ANnD D

Comprehensive

Eighth Edition

MIN G

=S 1GN

Joyce Farrell

PROGRAMMING LOGIC
AND DESIGN

('\'1"‘3‘:’%5_5}“1“‘ '_'vi‘ 1 \/ FRC }

JOYCE FARRELL

~ CENGAGE

' .
i Learning

Australia « Brazil « Japan « Korea s Mexico « Singapore,« Spain « Urffted Kitgdam « United States

| B4

CENGAGE
Learning

Programming Logic and Design,
Comprehensive version,

Eighth Edition

Joyce Farrell

Senior Product Manager: Jim Gish
Senior Content Developer: Alyssa Pratt

Development Editor: Dan Seiter

Content Project Manager:
Jennifer Feltri-George

Product Assistant: Gillian Daniels

Senior Market Development Manager:
Eric La Scola

Marketing Manager: Gretchen Swann

Art Director: Cheryl Pearl, GEX
Publishing Services

Text Designer: GEX Publishing Services
Cover Designer: GEX Publishing Services
Image Credit: © Kasia/Shutterstock.com
Manufacturing Planner: Julio Esperas
Copyeditor: Michael Beckett
Proofreader: Lisa Weidenfeld

Indexer: Alexandra Nickerson

Compositor: Integra

Printed in the United States of America

123456717161514 13

© 2015 Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored or used in any form or by any means—
graphic, electronic, or mechanical, including but not limited to photocopying,
recording, scanning, digitizing, taping, Web distribution, information networks,
or information storage and retrieval systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act—without the prior written
permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, www.cengage.com/support.

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions.
Further permissions questions can be e-mailed to
permissionrequest@cengage.com.

Library of Congress Control Number: 2013956197
ISBN-13: 978-1-285-77671-2

Cengage Learning

200 First Stamford Place, 4th Floor
Stamford, CT 06902

USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

Purchase any of our products at your local college store or at our preferred
online store: www.cengagebrain.com

Some of the product names and company names used in this book have been
used for identification purposes only and may be trademarks or registered
trademarks of their respective manufacturers and sellers.

Microsoft product screenshots used with permission from Microsoft Corporation.

Unless otherwise credited, all art and tables © 2015 Cengage Learning, produced
by Integra.

Cengage Learning reserves the right to revise this publication and make changes
from time to time in its content without notice.

e COM

CENGAGE brain

Buy. Rent. Access.

Access student data files and other study
tools on cengagebrain.com.

For detailed instructions visit
http://solutions.cengage.com/ctdownloads/

Store your Data Files on a USB drive for maximum efficiency in
organizing and working with the files.

Macintosh users should use a program to expand WinZip or PKZip archives.
Ask your instructor or lab coordinator for assistance.

Preface

Programming Logic and Design, Comprehensive, Eighth Edition provides the beginning
programmer with a guide to developing structured program logic. This textbook assumes no
programming language experience. The writing is nontechnical and emphasizes good
programming practices. The examples are business examples; they do not assume
mathematical background beyond high school business math. Additionally, the examples
illustrate one or two major points; they do not contain so many features that students become
lost following irrelevant and extraneous details.

The examples in this book have been created to provide students with a sound background in
logic, no matter what programming languages they eventually use to write programs. This
book can be used in a stand-alone logic course that students take as a prerequisite to a
programming course, or as a companion book to an introductory programming text using
any programming language.

Organization and Coverage

Programming Logic and Design, Comprehensive, Eighth Edition introduces students to
programming concepts and enforces good style and logical thinking. General
programming concepts are introduced in Chapter 1. Chapter 2 discusses using data and
introduces two important concepts: modularization and creating high-quality programs.
It is important to emphasize these topics early so that students start thinking in a
modular way and concentrate on making their programs efficient, robust, easy to read,
and easy to maintain.

Chapter 3 covers the key concepts of structure, including what structure is, how to recognize
it, and most importantly, the advantages to writing structured programs. This chapter’s
content is unique among programming texts. The early overview of structure presented here
gives students a solid foundation in thinking in a structured way.

Chapters 4, 5, and 6 explore the intricacies of decision making, looping, and array
manipulation. Chapter 7 provides details of file handling so students can create programs that
process a significant amount of data.

In Chapters 8 and 9, students learn more advanced techniques in array manipulation and
modularization. Chapters 10 and 11 provide a thorough yet accessible introduction to
concepts and terminology used in object-oriented programming. Students learn about
classes, objects, instance and static class members, constructors, destructors, inheritance, and
the advantages of object-oriented thinking.

' Organization and Coverage

Chapter 12 explores additional object-oriented programming issues: event-driven GUI
programming, multithreading, and animation. Chapter 13 discusses system design issues and
details the features of the Unified Modeling Language. Chapter 14 is a thorough introduction
to important database concepts that business programmers should understand.

Four appendices instruct students in working with numbering systems, large unstructured
programs, print charts, and post-test loops and case structures.

Programming Logic and Design combines text explanation with flowcharts and pseudocode
examples to provide students with alternative means of expressing structured logic.
Numerous detailed, full-program exercises at the end of each chapter illustrate the concepts
explained within the chapter, and reinforce understanding and retention of the material
presented.

Programming Logic and Design distinguishes itself from other programming logic books in
the following ways:

e It is written and designed to be non-language specific. The logic used in this book can be
applied to any programming language.

e The examples are everyday business examples; no special knowledge of mathematics,
accounting, or other disciplines is assumed.

o The concept of structure is covered earlier than in many other texts. Students are
exposed to structure naturally, so they will automatically create properly designed
programs.

e Text explanation is interspersed with both flowcharts and pseudocode so students can
become comfortable with these logic development tools and understand their
interrelationship. Screen shots of running programs also are included, providing students
with a clear and concrete image of the programs’ execution.

e Complex programs are built through the use of complete business examples. Students see
how an application is constructed from start to finish instead of studying only segments of
programs.

Features

This text focuses on helping students become better programmers and
understand the big picture in program development through a variety of
key features. In addition to chapter Objectives, Summaries, and Key Terms,
these useful features will help students regardless of their learning style.

Using a Priming Input to Structure a Program Rl

not eof? question is asked. If it is not the end of input data, then the program gets a

number, doubles it, and displays it. Then, if the not eof? condition remains true, the

program gets another number, doubles it, and displays it. The program might continue

while many numbers are input. At some point, the input number will represent the eof
condition; for example, the program might have been written to recognize the value 0 as =
the program-terminating value. After the eof value is entered, its condition is not | 107
immediately tested. Instead, a result is calculated and displayed one last time before

the loop-controlling question is asked again. If the program was written to recognize eof

when originalNumber is 0, then an extraneous answer of 0 will be displayed before

the program ends. Depending on the language you are using and on the type of input

being used, the results might be worse: The program might terminate by displaying an

error message or the value output might be indecipherable garbage. In any case, this last

output is superfluous—no value should be doubled and output after the eof condition is
encountered.

As a general rule, a program-ending test should always come immediately after an input
statement because that's the earliest point at which it can be evaluated. Therefore, the best
solution to the number-doubling problem remains the one shown in Figure 3-16—the
structured solution containing the priming input statement.

i flgures' This logic is struct,
and illustrations provide b fave Whent
the l’eader W'th a Vlsual = : incorrectly be doubléd and
5 | Declarations output:
|eaming expel"lence. num originalNumber

num calculatedAnswer

| illustrates

) T to do something—for
example, having a dead code

" Snput . A ora T W e

7;:jjwmbﬂ path in a program. This icon

I provides a visual jolt to the student,

calculatedAnswer = |

Yes

NS,
- L%
{ <. net eof? >

7

/
/

originalNumber * 2 | emphasizing that particular figures
v are NOT to be emulated and making

" output / -

"_calculatedanswer / students more careful to recognize

problems in existing ¢

Figure 3-17 Structured but incorrect solution to the number-doubling Prooie

xii

explain impartant chapter
concepts. Videos are part
of the text's enhanced
CourseMate site.

TWO TRUTHS & A LIE mini quizzes
appear after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are

true and one is false. Answers give
immediate feedback without “giving away”

answers to the multiple-choice questions
and programming problems later in

the chapter. Students also have the option
to take these quizzes electronically
through the enhanced CourseMate site.

Structuring and Modularizing Unstructured Logic

One advantage to modularizing the steps needed to catch the dog and start the water
is that the main program becomes shorter and easier to understand. Another
advantage is that if this process needs to be modified, the changes can be made in just
one location. For example, if you decided it was necessary to test the water
temperature each time you turned on the water, you would add those instructions only
help once in the modularized version. In the original version in Figure 3-22, you would have [117 .

to add those instructions in three places, causing more work and increasing the chance
for errors

No matter how complicated, any set of steps can always be reduced to combinations
of the three basic sequence, selection, and loop structures. These structures can be
nested and stacked in an infinite number of ways to describe the logic of any process
and to create the logic for every computer program written in the past, present, or
future.

For convenience, many programming languages allow two variations of the three basic structures. The case
structure is a variation of the selection structure and the do loop is a variation of the whi Te loop. You can
learn about these two structures in Append D. Even though these extrz structures can be used in most

programming languages, all logical problems can be solved without them.

Watch the video Structuring Unstructured Logic.

Structuring and Modularizi

provide
additional information—
for example, another
location in the book that
expands on a topic, or a
common error to watch
out for.

ng Unstructu

. When you encounter a question in a logical diagram,|
be ending.

2. In a structured loop, the logic returns to the loopco
loop body executes.

3. If a flowchart or pseudocode contains a question to
varies, you can eliminate the question.

J0jaq pua 1B anonas Jo 24K e “ananoy
Jauya ‘Weideip |2180] & Ul LORSEND © J3YN0IUS NOK UM T

Assessment

provide
opportunities to practice concepts. These
exercises increase in difficulty and allow
students to explore logical programming
concepts. Each exercise can be

completed using flowcharts, pseudocode,
or both. In addition, instructors can assign
the exercises as programming problems
to be coded and executed in a particular
programming language.

Exercises

A loop body is the set of actions that occur within s loop

A while loop is a structure that continues to repeat a process while some condition
vemains true

Repetition and iteration are alternate names for 2 loop structure

A while.do loop is an alternate name for a while loop. e
Stacking structures is the act of attaching structures end to end.

Nesting structures is the act of placing a structure within another structure.

A block is a group of statements that executes as a single unit

A priming input or priming read is the statement that reads the first input orior to starting

Exerc

=

a structured loop that uses the data

Goto-less programming is a name to describe structur

programmers do not use 3 "go to” statement

ises
Review Questions

Snarled program logic is called

4 snhake ¢
b. string «
The three structures of structured program
o sequence, selection, and loop ¢
b. selection, loop. and iteration ¢
A sequence structure can contain

a. only one task <
b, exactly three tasks «
Which of the following Is #ot another term
a. decision structure €
b, loop structure ¢
The structure that tests s condition, takes ac
the condition again can be called all of the

a iteration «
b, loop ’

student comp

major ideas and
presented. T

hension of the
technique

follow each chapter.

Urfi#rstanding Structure

Programming

In Figure 3-10, th® process of buying and planting flowers in the spring was shown
using the same structures as the generic example in Figure 3-9. Use the same logical
structure as in Figure 3-9 to create a flowchart or pseudocode that describes same
other process you know.

2 Eachof the flowchart segments in Figure 3.24 is unstructured. Redraw each
segment so that it does the same thing but (s structured.

5.
L]
o
A

ML’ £ ~ Yes

z
3
—
1
\
T —

L

Yes

Figure 3-24 Flowcharts for Exercise 2 (continues)

activity mirrors
that students are likely to
encounter in their first programming

JO b S. iwnblng how to

scribing how to doa

present
personal and ethical issues that
ivienrhr el Drogrammers must consider. These
questions can be used for written
N Porforming Haksimasnce assignments or as a starting point
1. A file named MAINTENANCED3-01txt is included with your downloadable stu- . -
dent files Assume thar this program is a working program in your organization and for classroom discussion.

that it needs modifications as described in the comments (lines that begin with two
stashes) at the beginning of the file. Your job is to alter the program to meet the new
specifications:

Behde describing how to

wrap a present. indilide at least two decisions and two loaps.

11 Draw a structured
prepare your favi

he Bugs

ploadable files for Chapter 3 include DEBL
303-03.txt. Each flle starts with some com Understanding Structure
s are lines that begin with two slashes (/7). F

bicudocode that has one or more bugs you
nloadable fles for Chapter 3 include a file

Howchart with syntax and/or logical eere (Up for Discussion
and correct all the bugs ",u'

=

1. Find more information about one of the following peaple and explain why he or she
is important to structured programming: Edsger Dljkstra, Corrado Bohm, Gluseppe
facopini, and Grace Hopper.

2. Computer programs can cantain structures within structures and stacked
structures, creating very large programs. Computers also can perform millions
of arithmetic caleulations in an hour. How can we possibly know the results are
correct?

3. Develop a checklist of rules you can use to help you determine whether a flowchart

o@ihn game show such as Whee! of Fc
¥ g or pseadocode segment is structured.

@tructured flowchart or pseudocod
ch as baseball or football and des
as an at-bal in baseball or a posse

w

are included

at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
concepts.

DEBUGGING EXERCISES are
included with each chapter because
examining programs critically and
closely is a crucial programming skill.

Students can download these exercises
at www.cengagebrain.com and through
the CourseMate available for this text.
These files are also available to
instructors at sso.cengage.com.

Instructor Resources

Other Features of the Text

This edition of the text includes many features to help students become better programmers
and understand the big picture in program development.

o Clear explanations. The language and explanations in this book have been refined over
eight editions, providing the clearest possible explanations of difficult concepts.

» Emphasis on structure. More than its competitors, this book emphasizes structure.
Chapter 3 provides an early picture of the major concepts of structured programming.

e Emphasis on modularity. From the second chapter, students are encouraged to write
code in concise, easily manageable, and reusable modules. Instructors have found that
modularization should be encouraged early to instill good habits and a clearer
understanding of structure.

e Objectives. Each chapter begins with a list of objectives so the student knows the topics
that will be presented in the chapter. In addition to providing a quick reference to topics
covered, this feature provides a useful study aid.

o Chapter summaries. Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter.

e Key terms. Each chapter lists key terms and their definitions; the list appears in the order
the terms are encountered in the chapter. A glossary at the end of the book lists all the key
terms in alphabetical order, along with working definitions.

CourseMate

The more you study, the better the results. Make the most of your study time by accessing
everything you need to succeed in one place. Read your textbook, review flashcards, watch
videos, and take practice quizzes online. CourseMate goes beyond the book to deliver what
you need! Learn more at www.cengage.com/coursemate.

The Programming Logic and Design CourseMate includes:

e Video Lessons. Designed and narrated by the author, videos in each chapter explain and
enrich important concepts.

¢ Two Truths & A Lie, Debugging Exercises, and Performing Maintenance. Complete
popular exercises from the text online.

e An interactive eBook. Highlighting and note-taking, flashcards, quizzing, study games,
and more.

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly at www.cengagebrain.com.

Instructor Resources

The following teaching tools are available to the instructor for download through our
Instructor Companion Site at sso.cengage.com.

o Electronic Instructor’s Manual. The Instructor’s Manual follows the text chapter by
chapter to assist in planning and organizing an effective, engaging course. The manual
includes learning objectives, chapter overviews, lecture notes, ideas for classroom
activities, and abundant additional resources. A sample course syllabus is also available.

e PowerPoint Presentations. This text provides PowerPoint slides to accompany each
chapter. Slides are included to guide classroom presentation, to make available to
students for chapter review, or to print as classroom handouts.

¢ Solutions. Solutions to review questions and exercises are provided to assist with grading.

o Test Bank". Cengage Learning Testing Powered by Cognero is a flexible, online system
that allows you to:

» author, edit, and manage test bank content from multiple Cengage Learning solutions
o create multiple test versions in an instant

e deliver tests from your LMS, your classroom, or anywhere you want

Additional Options

» Visual Logic™ software. Visual Logic is a simple but powerful tool for teaching
programming logic and design without traditional high-level programming language
syntax. Visual Logic also interprets and executes flowcharts, providing students with
immediate and accurate feedback.

o PAL (Programs to Accompany) Guides. Together with Programming Logic and Design,
these brief books, or PAL Guides, provide an excellent opportunity to learn the
fundamentals of programming while gaining exposure to a programming language. PAL
guides are available for C++, Java, and Visual Basic; please contact your sales rep for more
information on how to add the PAL guides to your course.

Acknowledgments

I would like to thank all of the people who helped to make this book a reality, especially

Dan Seiter, Development Editor; Alyssa Pratt, Senior Content Developer; Jim Gish, Senior
Product Manager; and Jennifer Feltri-George, Content Project Manager. I am grateful to be able
to work with so many fine people who are dedicated to producing quality instructional
materials.

[am indebted to the many reviewers who provided helpful and insightful comments during the
development of this book, including Gail Gehrig, Florida State College at Jacksonville; Yvonne
Leonard, Coastal Carolina Community College; and Meri Winchester, McHenry County College.

Thanks, too, to my husband, Geoff, and our daughters, Andrea and Audrey, for their support.
This book, as were all its previous editions, is dedicated to them.

—Joyce Farrell

Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

Preface

An Overview of Computers and Programming

Understanding Computer Systems
Understanding Simple Program Logic
Understanding the Program Development Cycle
Using Pseudocode Statements and Flowchart Symbols
Using a Sentinel Value to End a Program
Understanding Programming and User Environments
Understanding the Evolution of Programming Models
Chapter Summary
KeyTerms « v v s s 5 @ @ % & & 5 5 & & 5 & & 5 & o & 5 & 3
EXErciSes e e e e e e

Elements of High-Quality Programs

Declaring and Using Variables and Constants
Performing Arithmetic Operations
Understanding the Advantages of Modularization
Modularizing a Program
Creating Hierarchy Charts
Features of Good Program Design
Chapter Summary
KeyTerms v o oo
Exercises

Understanding Structure

The Disadvantages of Unstructured Spaghetti Code
Understanding the Three Basic Structures
Using a Priming Input to Structure a Program
Understanding the Reasons for Structure
Recognizing Structure
Structuring and Modularizing Unstructured Logic
Chapter Summary
KEY TEIMNS & v o 0 o o o & & & @ & & & we oF b o m R &
Exercises e e e e e

. 38

39
47
51
54
64
06
75
76
79

CHAPTER 4

CHAPTER 5

CHAPTER 6

Making Decisions 125

Boolean Expressions and the Selection Structure 126
Using Relational Comparison Operators 131
Understanding AND Logic 0. 135
Understanding OR Logic o . .. 145
Understanding NOT Logic « « v v v v v v v . 156
Making Selections within Ranges 157
Understanding Precedence When Combining AND and OR

Operators i e e e e e e e 163
Chapter Summary e 166
KeVTEIMS o o « o« o o 9 & @ & & o o & & & @ & ® o5 @ 5@ 5 5 167
EXErCiSES . v v v v e e e e e e e e e 168
Looping 177
Understanding the Advantages of Looping 178
Using a Loop Control Variable 180
Nested Loops 186
Avoiding Common Loop Mistakes 192
Usingaforloop« o 201
Common Loop Applications 203
Comparing Selections and Loops 213
Chapter Summary 217
Key Terms o o e e e e e 217
Exercises e e e e e e 218
Arrays 226
Storing DatainArrays e oo 227
How an Array Can Replace Nested Decisions 230
Using Constants with Arrays 239
Searching an Array for an ExactMatch 241
Using Parallel Arrayso oo 246
Searching an Array for a Range Match 253
Remaining within Array Bounds 257
Using a for Loop to Process anArray 261
Chapter Summary 262
Key Terms o o e e e e e 263

EXErCiSes . . v v v v v e e e e e e e e e e e e e e e 263

CHAPTER 7

CHAPTER 8

CHAPTER 9

File Handling and Applications 274

Understanding Computer Files 275
Understanding the Data Hierarchy 277
Performing File Operations 279
Understanding Control Break Logic 286
Merging Sequential Files 292
Master and Transaction File Processing 301
Random Access Files 310
Chapter Summaryo 311
Key Terms o o o e e e e e e e e e e 312
EXEICISES, & 6 o o o € 5 o 5 6 % % @ @ % % & % 5 % 5 % @ 0 314
Advanced Data Handling Concepts 321
Understanding the Need for Sorting Data 322
Using the Bubble Sort Algorithm 323
Sorting Multifield Records 342
Using the Insertion Sort Algorithm 345
Using Multidimensional Arrays 349
Using Indexed Files and Linked Lists 356
Chapter Summary e 361
KeYTErms: . o . 5 5 5 5 5 = 6 5 s 8 5 & 5 & » & 5 & & & @ 362
EXercises e e e e e e e 363
Advanced Modularization Techniques 371
The PartsofaMethod 372
Using Methods with no Parameters 373
Creating Methods that Require Parameters 376
Creating Methods that ReturnaValue 384
Passing an ArraytoaMethod 391
Overloading Methods 398
Using Predefined Methods 405
Method Design Issues: Implementation Hiding,

Cohesion, and Coupling 407
Understanding Recursion 410
Chapter Summary e e e 415
Key Terms o o o e e e e e e 416
EXCICISES . s w55 5m 51 31 5 5 9. 516 o & % % & i 03 00 1o 9 418

CHAPTER 10 Object-Oriented Programming 427

Principles of Object-Oriented Programming 428
Defining Classes and Creating Class Diagrams 435
Understanding Public and Private Access 444

Organizing Classes« v v v v v e 448 vii

Understanding Instance Methods 449
Understanding Static Methods 454
UsingObjects 456
Chapter Summary 462
KeyTerms e e e e 463
Exercises 465
CHAPTER 11 More Object-Oriented Programming

Concepts 471
Understanding Constructors 472
Understanding Destructors 479
Understanding Composition 481
Understanding Inheritance 482
An Example of Using Predefined Classes:

Creating GUI Objects o o o o .. 494
Understanding Exception Handling 495
Reviewing the Advantages of Object-Oriented

Programming 501
Chapter Summary 502
Key Terms v v v v e e e e e e e e e e 503
Exercises 504

CHAPTER 12 Event-Driven GUI Programming,
Multithreading, and Animation 514
Understanding Event-Driven Programming 515
User-Initiated Actions and GUI Components 518
Designing Graphical User Interfaces 521
Developing an Event-Driven Application 524
Understanding Threads and Multithreading 532
Creating Animation h35
Chapter Summary 538
KEBY TS & o o 5o o oo 53] 5] 51 5] 50 e 51 6 e o] e] & A EC 539

Exercises e e e e e 540

CHAPTER 13

CHAPTER 14

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

System Modeling with the UML

Understanding System Modeling

What is the UML?

Deciding When to Use the UML and Which UML
Diagrams to Use
Chapter Summary
Key Terms
Exercises

Using Relational Databases

Understanding Relational Database Fundamentals
Creating Databases and Table Descriptions
Identifying Primary Keys
Understanding Database Structure Notation
Working with Records within Tables
Creating Queries
Understanding Relationships Between Tables
Recognizing Poor Table Design

Understanding Anomalies, Normal Forms, and Normalization

Database Performance and Security Issues
Chapter Summary
KeyTerms e

Exercises

Understanding Numbering Systems
and Computer Codes

Solving Difficult Structuring Problems
Creating Print Charts

Two Variations on the Basic Structures—
case and do-while

Glossary

Index

Using UML Use Case Diagrams
Using UML Class and Object Diagrams
Using Other UML Diagrams

.......................

.......................

644

. 651
. 667

