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Preface

The aim of this book is to provide the fundamentals and the applications of the beam-
propagation method (BPM) implemented by finite-difference (FD) techniques, which is a
widely used mathematical tool to simulate light wave propagation along axially varying optical
waveguide structures. The content covers from the background, variations of the method,
numerical implementations and applications of the methodology to many practical examples.
Thus, the book gives systematic and comprehensive reviews and tutorials on the analysis and
design of integrated photonics devices based on optical waveguides using FD-BPM. It treats
almost all aspects of BPM analysis, from fundamentals through the advancements developed
by extension and modifications, to the most recent applications to specific integrated optical
devices.

The book can be a text for postgraduate courses devoted to numerical simulation of inte-
grated photonic devices. Also, it is suitable for supplementary or background reading in mod-
ern curricula graduate courses such as ‘Optoelectronics’, ‘Optical engineering’, ‘Optical-wave
electronics’, ‘Photonics” or ‘Integrated optics’. This book is also of interest for professional
researchers and engineers in the area of integrated optics, optoelectronics and optical commu-
nications. Although BPM codes are commercially available, or even free, many engineers must
develop their own software to suit their particular requirements. This book can serve both the
building of home-made codes, as well for use of existing software by understanding the under-
lying approaches inherent in the BPM and its range of applicability.

Integrated photonics devices are based on optical waveguides with transversal dimensions
of the order of microns. This means that the light propagation along these structures cannot
be analysed in terms of ray optics; instead the light must be treated as electromagnetic
waves. Hence, Chapter 1 presents the basics of the electromagnetic theory of light, starting
from Maxwell’s equations in inhomogeneous media. Wave equations in terms of the transverse
field components in inhomogeneous media are obtained, including the treatment of anisotropic
media and second-order non-linear media. Using the slowly varying approximation, full vec-
torial equations for the electric and magnetic fields are obtained in Chapter 2, which are the
basic differential equations for developing BPM algorithms. Finite-difference approximations
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of the wave equations are then derived for the simplest case of scalar propagation in
two-dimensional structures that allows us to study the stability and numerical dissipation of
FD-BPM schemes. Chapter 3 develops full vectorial FD-BPM algorithms for the simulation
of light propagation in 2D and 3D structures where the numerical implementations of the
FD-BPM are detailed.

Extensions and modifications of the BPM approaches based on finite-difference techniques
are presented in Chapter 4. These include wide-angle BPM, which relaxes the restriction of
the application of BPM to paraxial waves and allows the simulation of light beams with large
propagation angles respect of the longitudinal direction. BPM algorithms, which can handle
multiple reflections known as bidirectional-BPM, are then discussed. Simulation of light prop-
agation in active media, second-order non-linear media and anisotropic media are also topics
covered in Chapter 4. The last sections include the description of time-domain (TD) simulation
techniques based on finite differences, which can simulate the propagation of optical pulses and
can manage backward waves due to reflections at waveguide discontinuities. Both the time-
domain BPM and finite-difference time-domain (FDTD) are explained in detail. The different
BPMs supply almost universal numerical tools for describing the performance of a great variety
of integrated optical devices. Although particular devices have specific routes to be modelled
with their own constraints, the great advantage of the BPM lies in the fact that, as few approx-
imations have been made for its derivation, its applicability is quite wide and almost any inte-
grated photonic device can be modelled by using it. The last chapter, Chapter 5, presents
selected examples of integrated optical elements commonly used in practical integrated photo-
nic devices, where their performance and relevant characteristics are analysed by the appropri-
ate BPM approach.

Some appendices have been added at the end of the book. They include material related to
BPM algorithms or BPM simulations of some integrated photonics devices, but which is not
indispensable to the understanding of the different topics developed along the book chapters.
The appendices include mathematical derivations of some formulae, physical phenomena
descriptions and even relevant program listing.

Commonly accepted notation and symbols have been utilized throughout this book.
However, some of the symbols have multiple meanings and therefore a list of symbols and
their meanings is provided at the beginning of the book to clarify symbol usage. Also, a list
of acronyms is given to help the reader.

A selection of BPM programs are made available free of charge for the readers at the
website of the author (www.uam.es/personal_pdi/ciencias/glifante). Among others, this selec-
tion includes the programs “Vectorial mode solver for planar waveguides’, ‘Vectorial light
propagation in 2D-structures’, “Vectorial light propagation in 3D-structures’ and ‘2D-light
propagation in the time domain’.

Ginés Lifante Pedrola
Madrid, February 2015
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