Infrared Observation of Earth's Atmosphere

Hervé Herbin
Philippe Dubuisson

WILEY

Series Editor André Mariotti

Infrared Observation of Earth's Atmosphere

Hervé Herbin Philippe Dubuisson

WILEY

First published 2015 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd 27-37 St George's Road London SW19 4EU UK

www.iste.co.uk

John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA

www.wiley.com

© ISTE Ltd 2015

The rights of Hervé Herbin and Philippe Dubuisson to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2015952411

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-560-3

Acknowledgements

The authors would like to thank their colleagues at the Laboratoire d'Optique Atmosphérique (LOA) UMR CNRS 8518 at the Université de Lille 1: Olivier Pujol, Fanny Minvielle and Laurent Couillard-Labonnote, for their continuous advice and generous proofreading as well as Solenne Abraham-Herbin for her contribution to many figures and illustrations featured in this book.

List of Symbols and Units of the Parameters Employed in This Book

Airmass factor:	m
Albedo:	CX.
Altitude:	z [m]
Asymmetry factor:	g
Azimuth angle:	ϕ
Bidirectional Reflectance Distribution	
Function (BRDF):	$\rho(s,s_i)$
Brightness temperature:	$T_B[K]$
Complex index of refraction:	m
Cosine of zenith angle:	$\mu = \cos \theta$
Effective radius:	$r_c[m]$
Emissivity:	\mathcal{E}
Exitance:	$M[W.m^{-2}]$
Extinction, scattering, absorption	
coefficient:	k_{ext} , k_{scat} , k_{abs} [m ⁻² .kg ⁻¹]
Extinction, scattering,	
absorption cross sections:	σ_{ext} , σ_{scat} , σ_{abs} [m ⁻²]

Qext, Qscat, Qabs

Extinction scattering, absorption

efficiencies:

Extinction, scattering, absorption	
Frequency:	ν [Hz]
Gas density:	ρ [kg.m ⁻³]
Global Warming Potential GWP:	GWP
Height scale:	H[m]
Legendre polynomials coefficient:	β_l
Life time of a species x:	τ_x [s]
Liquid Water Content:	Q_L [kg.m ⁻³]
Molar mass species x:	$M_x[\text{kg.mole}^{-1}]$
Mueller matrix:	S
Net flux density:	$F^{net}[W.m^{-2}]$
Optical thickness:	τ_{ext} , τ_{scat} , τ_{abs}
Particle radius and diameter:	r, D [m]
Planck function:	B_{λ} [W.m ⁻² .sr ⁻¹ . μ m ⁻¹]
Pressure:	p [Pa - hPa]
Radiative efficiency:	RE [W.m ⁻² .ppb ⁻¹]
Radiative forcing:	ΔF [W.m ⁻²]
Reflectance:	ρ
Scattering angle:	Θ
Scattering phase function:	$p(\Theta)$
Single scattering albedo:	$\overline{\mathcal{O}}_0$
Size distribution:	$n [\text{m}^{-3}]$
Size parameter:	X
Solar constant:	F_0 [W.m ⁻²]
Solid angle:	$\mathcal{Q}[\mathrm{sr}]$
Spectral flux density (monochromatic):	$F_{\lambda}[\text{W.m}^{-2}.\mu\text{m}^{-1}]$
Spectral intensity (monochromatic):	$I_{\lambda}[\text{W.sr}^{-1}.\mu\text{m}^{-1}]$
Spectral radiance (monochromatic):	$L_{\lambda}[\text{W.m}^{-2}.\text{sr}^{-1}.\text{µm}^{-1}]$
Spectral radiative flux (monochromatic):	$\Phi_{\lambda}[W.\mu m^{-1}]$
Spectral source function (monochromatic):	$J_{\lambda}[W.m^{-2}.sr^{-1}.\mu m^{-1}]$
Surface:	$S[m^2]$

Temperature: T[K]Truncation coefficient: f Volume Mixing Ratio (VMR): VMR [ppmv] $k, k \text{ [m}^{-1}\text{]}$ Wave vector and number: Wavelength: λ [m] Wavenumber: $\tilde{\nu}$ [cm⁻¹]

Zenith angle: θ

List of Acronyms

3MI: Multi-viewing Multi-channel Multi-

polarization Imaging mission

ACE-FTS: Atmospheric chemistry experiment Fourier

transform spectrometer

AFGL: Air Force Geophysics Laboratory

AIRS: Atmospheric infrared sounder

AU: Astronomical unit

ATOVS: Advanced TIROS operational vertical

sounder

ATMOS: Atmospheric trace molecules spectroscopy

experiment

A-TRAIN: Afternoon train

ATSR: Along track scanning radiometers

AVHRR: Advanced very high resolution radiometer

BOA: Bottom of atmosphere

BRDF: Bidirectional reflectance distribution function

BTD: Brightness temperature difference

CALIOP: Cloud-aerosol lidar with orthogonal

polarization

CALIPSO: Cloud-aerosol lidar and infrared pathfinder

satellite observations

CCD: Charge-coupled device

CERES: Cloud and Earth radiant energy system

CkD: Correlated k-Distribution

CLAES: Cryogenic limb array etalon spectrometer

CPR: Cloud profiling radar

DFG: Deutsche ForschungsGemeinschaft

DOFS: Degree of freedom for signal

DOM: Discrete Ordinates Method

ECMWF: European Centre for Medium-range Weather

Forecasts

ERBE: Earth radiation budget experiment

ESA: European Space Agency

ESFT: Exponential sum fitting of transmission

ETHER: Thematic Expertise Group for Atmospheric

Chemistry

FLIP: Fictive light particle

Flx: Flux density

GEO: Geostationary orbit

GISS: The NASA Goddard Institute for Space

Studies

GOES: Geostationary orbital environmental satellite

GOMOS: Global ozone monitoring by occultation of

stars

GOSAT: Greenhouse gases observing satellite

GWP: Global warming potential

HALOE: Halogen occultation experiment

HIRDLS: High resolution dynamics limb sounder

HSR: High spectral resolution

HWHM: Half width at half maximum

I3RC: Intercomparison of 3D radiation codes

IASI: Interféromètre Atmosphérique de Sondage

Infrarouge (infrared sensing atmospheric

interferometer)

ICAO: International Civil Aviation Organization

ICARE: Interactions cloud aerosol radiation etc.

ICRCCM: Intercomparison of radiation codes in climate

models

IFOV: Instantaneous field of view

IIR: Imaging infrared radiometer

ILAS: Improved limb atmospheric spectrometer

ILS: Instrumental line shape

IMG: Interferometric monitor for greenhouse gases

IPA/ICA: Independent pixel/column approximation

IPCC: Intergovernmental Panel on Climate Change

IR: Infrared

IRS: Infrared sounder

ISAMS: Improved stratospheric and mesospheric

sounder

ISCCP: International Satellite Cloud Climatology

Project

Jac: Jacobian

JAXA: Japan Aerospace Exploration Agency

JPL: Jet Propulsion Laboratory

LBL: Line-by-line algorithm

LEO: Low Earth orbit

LLS: Linear lesat square

LMD: Laboratoire de Météorologie Dynamique

LMU: Ludwig Maximilians University. Munich

LOA: Laboratoire d'Optique Atmosphérique

LTE: Local thermodynamic equilibrium

LUT: Lookup table

MAP: Maximum a posteriori

MAPS: Measurement of air pollution from satellites

MC: Monte Carlo

MERIS: Medium resolution imaging spectrometer

MIPAS: Michelson interferometer for passive

atmospheric sounding

MLS: Microwave limb sounder

MO: Matrix operator

MODIS: Moderate resolution imaging

spectroradiometer

MOPITT: Measurements of pollution in the troposphere

MSG: Meteosat second generation

MTG: Meteosat third generation

MW: Microwaves

NASA: National Aeronautics and Space

Administration

NLLS: Nonlinear least square

NIR: Near-infrared

NOAA: National Oceans and Atmosphere

Administration

OCO: Orbiting carbon observatory

OEM: Optimal estimation method

OMI: Ozone monitoring instrument

OSIRIS: Optical spectrograph and infrared imager

system

PARASOL: Polarization & anisotropy of reflectances for

atmospheric sciences coupled with

observations from a lidar

POLDER: Polarization and directionality of the Earth's

reflectance

QDIP: Quantum dot infrared photodetector

QWIP: Quantum well infrared photodetector

Rad: Radiance

RMS: Root mean square

RTE: Radiative transfer equation

SAGE: Surface and atmosphere geochemical

explorer

SAMS: Surface atmospheric measurement system

ScaRaB: Scanner for radiation budget

SCIAMACHY: Scanning imaging absorption spectrometer

for atmospheric chartography

SEVIRI: Spinning enhanced visible and infrared

Imager

SH: Spherical harmonics

SMOW: Standard mean ocean water

SNR: Signal-to-noise ratio

SOS: Successive orders of scattering

SSM/I: Special sensor microwave imager

TANSO-FTS: Thermal and near infrared sensor for carbon

observation - Fourier transform spectrometer

TES: Tropospheric emission spectrometer

TOA: Top of atmosphere

TRMM: Tropical rainfall measuring mission

Trs: Transmission

UCSB: University of California, Santa Barbara

UW: University of Wyoming

UV: Ultraviolet

VIS: Visible

VMR: Volume mixing ratio

VPIE: Vapour pressure isotopologue effect

WIS: University of Wisconsin

WMO: World Meteorological Organization

Preface

The aim of this book is not for us to rewrite a new reference book on radiative transfer or atmospheric physics and chemistry; the bibliography of this field is already very rich, such as the reference books we mention all chapters or each chapter. Here, the goal is to provide an overview of spatial infrared observations for studies on the Earth's atmosphere. The theoretical and instrumental bases and the numerical methods are summarized, as well as the main application domains, which are illustrated with the help of some concrete examples.

This book is, therefore, aimed primarily at undergraduate or Master's students in Physics and Physico-Chemistry, who will find it easy to acquire basic knowledge in this field, with the help of many illustrations, tables and summaries. However, we also think that it will be a useful resource for PhD students and researchers in related scientific fields to help better place their work in the context of current and future space missions with the help of many examples and bibliographic references contained in this book. Thus, this provides an initial theoretical overview before thorough knowledge is acquired on a specific topic associated with infrared observations of the atmosphere. For this, we selected a non-exhaustive list of key references in the field, which we present at the end of each chapter in a section called "for further information".

Before you start reading this book, we wish to draw the reader's attention to some recurring definitions throughout this book.

Much space is devoted to high spectral resolution measurements. In general, the spectral resolution of an instrument defines the capacity of its measurement to distinguish between two different wavelengths. Thus, there is no definition in the strict sense of what "high spectral resolution (HSR)" is, since it depends on the spectral variation of the object of study. However, in spectroscopy, it is common to use the term high spectral resolution for any measurement with a resolution in the order of magnitude of the Doppler width of the lines. In a broader sense, and in the case of gaseous absorption analysis by infrared remote sensing, we consider that the term HSR can be applied to all measurements, which helps solve structures of rovibrational molecules (typically $\Delta \tilde{v} \leq 1 \ cm^{-1}$).

In the field of spectroscopy, the parameter and unit which are commonly used to characterize electromagnetic waves are, respectively, the wavenumber and cm⁻¹. These can sometimes be confusing for those working in the microwave or far infrared range of the spectrum, which often use the frequency: v [GHz], or for those in the visible-UV domain where one is more likely to use wavelength λ [nm or μ m]. Thus, in this book, we often use the wavenumber: \tilde{v} , which is the number of oscillations of the electromagnetic wave per unit length. This term was introduced for the first time by Rydberg, for quantification of emissions from a hydrogen atom. Subsequently, the work on the radiation-matter interaction focused on theoretical and experimental studies of atoms. The wavenumber then became the "reference" and was often expressed in cm-1 to avoid having to deal with many decimal places. Since 1960, molecular spectroscopy has been booming, through the use of Fourier transform spectrometers. However, for these, the wavenumber expressed in cm-1 provides a direct mathematical relationship with the optical path difference [cm]. Thus, although a little "unusual", the wavenumber in cm⁻¹ is still the preferred unit for characterizing infrared measurements with high spectral resolution.

Finally, in this book, we have deliberately omitted the use of the word photon. Indeed, the term "photon" is frequently mentioned in the

field of atmospheric radiative transfer. We often find phrases such as "the direction of the photon", "photon trajectory" and "photon mapping". The latter term is particularly used in the case of Monte Carlo codes used for the radiative transfer in heterogeneous atmospheric environments. This misuse of the term photon has been criticized many times in atmospheric radiation literature. In modern physics, it is in fact well known that it is not possible to associate a position or a precise path to a photon and this term only should be used strictly in the context of quantum electrodynamics. Thus, based on a summary note [PUJ 15], which comments on the misuse of this term, we will use the neologism Fictive LIght Particle (FLIP) as a substitute for the term photon, simple terminology but one that does not contradict the fundamental principles of modern physics.

Hervé HERBIN Philippe DUBUISSON September 2015