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Preface

The London Taught Course Centre (LTCC) for PhD students in the
Mathematical Sciences has the objective of introducing research stu-
dents to a broad range of topics. For some students, some of these
topics might be of obvious relevance to their PhD projects, but
the relevance of most will be much less obvious or apparently non-
existent. However, all of us involved in mathematical research have
experienced that extraordinary moment when the penny drops and
some tiny gem of information from outside ones immediate research
field turns out to be the key to unravelling a seemingly insoluble
problem, or to opening up a new vista of mathematical structure. By
offering our students advanced introductions to a range of different
areas of mathematics, we hope to open their eyes to new possibilities
that they might not otherwise encounter.

Each volume in this series consists of chapters on a group of
related themes, based on modules taught at the LTCC by their
authors. These modules were already short (five two-hour lectures)
and in most cases the lecture notes here are even shorter, covering
perhaps three-quarters of the content of the original LTCC course.
This brevity was quite deliberate on the part of the editors — we
asked the authors to confine themselves to around 35 pages in each
chapter, in order to allow as many topics as possible to be included
in each volume, while keeping the volumes digestible. The chapters
are “advanced introductions”, and readers who wish to learn more
are encouraged to continue elsewhere. There has been no attempt to
make the coverage of topics comprehensive. That would be impos-
sible in any case — any book or series of books which included all
that a PhD student in mathematics might need to know would be
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so large as to be totally unreadable. Instead what we present in this
series is a cross-section of some of the topics, both classical and new,
that have appeared in LTCC modules in the nine years since it was
founded.

The present volume is within the area of fluid and solid mechanics.
The main readers are likely to be graduate students and more expe-
rienced researchers in the mathematical sciences, looking for intro-
ductions to areas with which they are unfamiliar. The mathematics
presented is intended to be accessible to first year PhD students,
whatever their specialised areas of research. Whatever your math-
ematical background, we encourage you to dive in, and we hope
that you will enjoy the experience of widening your mathematical
knowledge by reading these concise introductory accounts written
by experts at the forefront of current research.

Shaun Bullett, Tom Fearn, Frank Smith
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Chapter 1

Introductory Geophysical Fluid
Dynamics

Michael Davey

Department of Applied Mathematics and Theoretical Physics,
Unaversity of Cambridge, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge CB3 0WA, UK
mkd3@cam. ac.uk

This chapter concerns mathematical modelling of large-scale fluid flows
relative to a rotating frame of reference, for which the effects of rota-
tion are dominant and to leading order there is a balance of horizontal
pressure gradients and Coriolis forces. The principal application is to
oceanic and atmospheric flows with horizontal scales of tens of kilome-
tres or more, and timescales of days or more. A fundamental equation in
the dynamics of such flows is that for quasigeostrophic potential vortic-
ity, and this is derived in the first part of the chapter, with stratification
effects included in the form of layers with constant density within each
layer. Large-scale wave-like behaviour is supported in the form of Rossby
waves, and some basic properties of these waves are presented. Simplified
conceptual quasigeostrophic models provide understanding of dynamical
processes, and two examples are described: ocean spin-up and multiple
equilibria.

1. Introduction

Mathematical representation of large-scale atmospheric and oceanic
flows has great practical importance as it provides the basis for
the dynamical numerical models used for making weather and cli-
mate outlooks for hours to decades ahead. The full equations of fluid
motion are too complex to use for this purpose, but mathematical
theory provides the foundation for approximations that represent the
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scales and phenomena of interest and allow efficient numerical com-
putation. Even with these approximations, atmospheric and oceanic
flows contain processes and interactions on a wide range of space
and time scales. Mathematical models can further be used to focus
on particular processes and investigate their behaviour and roles.

This chapter contains a subset of a course intended for grad-
uates who are familar with the basics of fluid mechanics, such as
the Navier-Stokes equations and wave-like behaviour such as grav-
ity waves, but have not encountered geophysical fluid dynamics.
A brief explanation of the governing equations for quasigeostrophic
flow is provided, without rigorous justification for the various stan-
dard approximations employed.

Two examples are provided of conceptual models based on the
quasigeostrophic potential vorticity equations. One is a model of
mid-latitude wind-driven ocean circulation. The classic steady case
demonstrates how intense currents such as the Gulf Stream occur
near western boundaries, while the time-dependent part illustrates
how Rossby waves influence ocean circulation and how in a strat-
ified ocean they provide oceans with a long-term “memory”. The
second example demonstrates how the interaction of Rossby waves,
topographic drag and mean flow may create multiple stable states,
relevant in particular to “blocked” flow regimes in the atmosphere.

There are many good textbooks on this subject. More detailed
and rigorous derivations of sets of equations relevant to geophysical
fluid dynamics, with applications, may be found in books by Gill,!
Pedlosky? and Vallis® for example.

2. Governing Equations

For flows relative to a rotating frame of reference, the Navier—Stokes
equations have the form
D v : N
F% +2Q X u = .. + vV2u + gravitational effects, (1)
P
where u is the velocity vector, p is pressure, p is density, D/Dt indi-
cates a derivative following the motion and v is a viscosity coefficient.



Introductory Geophysical Fluid Dynamics 3

For planet Earth, the rotation vector §2 has magnitude 2 = 27 radi-
ans per day and direction outward from the North Pole. Earth can be
regarded as a sphere of radius R., with the atmospheric and oceanic
flows in thin layers near that radius, with large horizontal scale com-
pared to the depth in each medium.

With flows in mid-latitude regions in mind, choose a coordinate
system that is centred on some latitude y. For simplicity, locally
Cartesian coordinates are defined, with z in the zonal (west to
east) direction, y in the meridional (south to north) direction, and
z vertically upwards. The corresponding fluid velocity components
are denoted u (zonal), v (meridional) and w (upward). Note that
y = R.(0 —6;), and at latitude 6 the radially outward component of
the rotation vector has size Qsinf.

The horizontal momentum equations are

u + (u-V)u — fv= —% + vV, (2a)

v+ (u-Vv+ fu= by + V2. (2b)
i

Here, f = 2Qsin# is referred to as the Coriolis parameter. Other
components of the rotation vector other than f have small influence,
and have been omitted in (2). (For brevity formal justifications of the
approximations made here and elsewhere are omitted: details can be
found in textbooks such as those cited in the introduction.)

The variation of f with latitude is fundamental to many prop-
erties of the large-scale flows of interest here. A further very com-
mon simplification is to consider f as a linear function of y, by using
sin f = sin 6+ (68 — 6p) cos By. Then f ~ fo+ By, where fo = 2Qsin 6
and 8 = 2Q cosby/R.. With this assumption, the coordinate system
is known as a “beta-plane”. In standard terminology, a system with
3 =0 is referred to as an “f-plane”.

Mass conservation requires

pt+ V- (pu) =0. (3)

2.1. Hydrostatic balance

For oceanic and atmospheric flows with horizontal scale much larger
than the vertical scale, the vertical equation of motion is dominated
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by the balance of vertical pressure gradient and gravitational force.
To a very good approximation, the system is in hydrostatic balance,
with

Pz = —pY- (4)
Effectively the pressure at any point is determined by the mass of
overlying fluid, and is not influenced by the fluid motion.

2.2. Geostrophic balance

Suppose the flow has length scale L, a horizontal velocity scale U and
an advective time scale L/U. The non-dimensional Rossby number
R, fundamental to rotating fows, is defined as

U

We assume the Rossby number is small (R < 1), in which case the
left-hand side of (2) is dominated by the Coriolis terms fv and fu.
Apart from thin layers near boundaries, viscous and forcing effects
are small. The dominant balance is between the Coriolis and pressure
gradient terms:

—fv:—&, fu:—gy. (6)

P P

This is referred to as “geostrophic balance”. For later use, define a

geostrophic horizontal flow g, v, by

= — Px y — __Py
K (pofo)’ e (pofo)’ (")

where pg is a typical density scale. Note that w, - Vp = 0: the
geostrophic flow follows lines of constant pressure, i.e., isobars. Flow

is cyclonic around low pressure centres, and anti-cyclonic around high
pressure centres. In the northern hemisphere, orientation is such that
cyclonic flow is anti-clockwise. Note also that ug, + vgy = 0, so the
geostrophic flow is horizontally non-divergent. Thus a geostrophic
streamfunction 1) can be defined: conventionally such that

Ug = —WYy, Ug =Py (8)

(Note: from here on assume V is the horizontal gradient operator,
and u = (u,v), as should be obvious from the context.)
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2.3. Representation of the density distribution
as layers

In practice, density varies throughout the ocean and atmosphere. The
ideal gas law applies to the atmosphere, and in the ocean density
depends mainly on temperature and salinity. As is often done for
conceptual models and theoretical investigations, we will consider a
simple representation of the density structure as layers in which each
layer has a constant prescribed density. (See textbooks for alternative
representations.) Thus, thermodynamic aspects that influence the
density are not considered here: instead, the focus is on dynamic
processes. We shall also assume that density varies little throughout
the system. This is a viewpoint more directly suited to the oceans
than the atmosphere: for the latter an alternative formulation can be
made that allows for the substantial vertical variation of air density
through the depth of the atmosphere at rest.

Suppose a system has N layers, with layer 1 at the top overlying
layer 2 overlying layer 3, ete. Suppose layer n has density p,, with
Pn < pnt1. With the fluid at rest the interfaces are horizontal, and
the layers have depths H, which are constant, except for the lowest
layer whose depth may vary with x and y to allow the possibility of
underlying topography. Suppose the top of layer 1 is at z = zp when
undisturbed, and suppose the perturbation of this surface is 7y, so
the top of disturbed layer 1 is at 2z + 7;. Similarly, 7, denotes the
perturbation to the interface between layers 1 and 2, so the bottom
of layer 1 (and the top of layer 2) is at 2p — Hy + 72, and so on. A
fixed perturbation nyx4(z,y) at the base of layer N can be used to
represent, the topography, so the bottom of layer N is at zp — (H; +
coo 4 Hy ) +nn 1. The density structure for such a system with two
layers is illustrated in Fig. 1.

Using hydrostatic balance, some useful relationships between
pressures and layer distributions can be derived. Suppose the pres-
sure at the top surface is pr at z = zp. From the hydrostatic relation,
in layer 1

p1=pr+pigm — p19(z — 27) (9)
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Fig. 1. Schematic diagram of the density structure in a two-layer system.

for z0 — Hy 4+ 12 < 2 < 2 + m1, and in layer 2

p2 = pr+prgm + (pr — p2)g(Hy — 12) — p2g(z — 21) (10)

for zr — Hy — Hy+ 13 < 2 < zp — Hy + 19, etc.

Suppose pp is constant. (For oceanic applications, pr is the sea
level atmospheric pressure, fluctuations in which are small compared
to pressure fluctuations below the surface and negligible for most
circumstances. For atmospheric applications, pr is effectively zero at
the top of the atmosphere.) Then the horizontal pressure gradients
are independent of depth within each layer:

Vpi = p1gVm, Vpz = pigVn + (p2 — p1)gVie, ete. (11)

Thus, the geostrophic flow ug in layer 1, determined by Vp, can be
diagnosed from 1; and is independent of depth in layer 1; likewise
U, is determined by 7 and 7, ete. (Thus u, is determined by the
overlying density structure.) Note that

V(p2 —p1) = (p2 — p1)gVne, (12)

so the difference wg —u, is determined by n. The vertical
geostrophic shear between two layers is determined by the horizontal
gradient in the intervening density structure.

With density constant within each layer, from (3) it follows that

Uy + vy + wy = 0. (13)
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2.4. Shallow water equations and potential vorticity

The above relations show how the density structure, pressure
gradients and geostrophic flows are diagnostically related. (In partic-
ular, given all the p, and 7, u, are known.) However, more informa-
tion is needed to find out how they evolve. The relevant equations
can be derived rigorously through asymptotic expansions with the
Rossby number as a small parameter. Here, a more ad hoc approach
is adopted, making a series of assumptions that can ultimately be
justified more formally.

Within each layer (away from possible thin frictional layers at the
boundaries) the horizontal flow is independent of depth and governed
by the “shallow water equations”:

ur + (w-V)u— fo= —% + AV?y, (14a)
0

v+ (- VYo + fu= —ﬁ—y + AV, (14b)
0

The situation is analogous to long waves (wavelength much greater
than depth) in shallow water, hence the name. Note that a constant
reference density is used in the pressure gradient terms, valid for
all layers. Here, A is a weak horizontal diffusivity coefficient, whose
influence is negligible except in regions of strong gradients. (This
diffusivity is intended to represent the effects of small scales for which
the approximate equations are no longer valid, rather than molecular
viscosity.)

The vorticity (more correctly, the vertical component of the vor-
ticity vector) is ( = v, — u,. The vector identity (v - V)u =
VQQ/Z — u X Ck, where k is the unit vertical vector, can be used
to write (14) as

1, . ,
wt 5@ = (f +Qv=—"2 + AV, (15a)
0
1 .
v+ §(g2)y +(f+Q)u= —i—y + AV?v. (15b)
0

Eliminating p and «? by cross-differentiating leads to the vorticity
equation

G+u-V(C+ )+ + )V -u=AVC (16)
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From (13), it follows that

D(¢+ f)
Dt

where the material derivative is D/Dt = 9/0t + u - V. Thus changes
in the total vorticity ¢ 4 f are induced by vertical motion stretching
or shrinking the fluid column within the layer and by dissipation.

As u and v are independent of depth within the layer, it follows
from (13) that w, is depth-independent and hence

= ({ + flw: + AV, (17)

(wr — wp)

h '
where h denotes the layer depth and wr and wp denote w near the
top and bottom of the layer.

The vertical motions wy and wp are influenced both by the upper
and lower layer boundary positions and by thin frictional layers
known as Ekman layers. Within these thin boundary layers, the flow
is adjusted to match boundary conditions at the layer boundaries

w s =

(18)

where necessary. For brevity, the standard properties of Ekman layers
are not derived here, but will simply be stated as required in later
sections. For now, write

Dh

wp — W = E +wWEpT — WEB, (19)

indicating the contributions from layer boundary positions and from

the thin Ekman layers.
Noting that

D(+f)_ 1D . (E+f)D
R Y A A TR Tl
it follows from (17) and (18) that

D+ f) €+ [f)wpr—wes) 1, 9
Dt h h h - EAV < (20)

The expression (¢ + f)/h is the potential vorticity, which is a funda-
mental quantity in geophysical fluid dynamics. (There are equivalent
expressions in continuously stratified systems.)




