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Foreword

This carefully written and expert text on fracturing of rock, reflecting deep
theoretical understanding and second to none modelling abilities, has been written
by three well-known authors. They combine theoretical brilliance and creativity. a
long life of expert insight, professorship, and authorship in many rock mechanics
problems, and expert application in several current nuclear waste repository studies.
All three are well known to the reviewer, who has been persuaded to provide
an opinion on this interesting text, despite an altogether simpler background in
practical rock engineering. Their theoretical and applied fracture mechanics text,
which of course is written for experts, is presented in such an ordered manner
that it is digestible, even if the theory and extensive matrices required have to be
accepted as the production of an unusually talented main author, whose exceptional
mathematical abilities have never been in doubt.

The usefulness of FRACOD, the boundary element — displacement disconti-
nuity method (DDM) of modelling of fracturing in over-stressed rock, which is
developed, validated, and demonstrated during the 200 pages of this book, has
several times been appreciated by the reviewer, in specific deep tunnelling and
over-stressed shallow cavern scenarios in the past 7 or 8 years. In the first case, the
predicted deeply penetrating stress-induced rock-bursting damage, with and without
additional jointing, caused by in situ principal stresses as high as 60 MPa, was
not believed by the contractor, but was severe enough to later damage the TBM.,
and required completion of the tunnel by drill-and-blast, an approach suggested
many years before completion, due to the severe FRACOD-related results. In
the second case, the predicted fracturing of weather-weakened rock beneath the
elephant-footing foundations of overloaded lattice girders was observed in practice
(due to post-collapse excavation), and was undoubtedly a triggering factor in the
collapse of the large cavern at shallow depth, with the severe overloading due to an
undiscovered ridge of rock high above the cavern arch. Various load, rock strength,
and modulus variations were tested, and the modelled results could be ‘seen’ in
practice, at the overloaded side of the cavern.

Chapters 2 and 3 of this book on the modelling of rock fracturing processes, lay
a foundation for a thorough understanding of fracture mechanics, and its modelling



vi Foreword

using DDM. Fracture initiation, and development with time, including sub-critical
crack growth, and sliding on pre-existing joints is modelled by FRACOD. Coupled
thermo-mechanical effects, coupled hydro-mechanical effects, and a particularly
realistic looking hydraulic fracturing development in a (2D) rock mass with some
pre-existing jointing, follow in later chapters, but are preceded by their theoretical
description and possibility of development in FRACOD.

The authors have taken care to explain and then give examples of the input data
needed for FRACOD and describe how it can be obtained from laboratory testing.
They then validate FRACOD by comparing the numerical solutions, using a range of
element sizes, with problems that have analytical solutions. This is done of course
for tensile fracturing and shear fracturing, followed by modelling of creep (in the
form of sub-critical crack growth), and ends with the coupled processes caused by
heating or fluid pressure, and the different styles of fracturing they induce. The
hydraulic fracturing development causes some wing cracks to form at the tips of the
closest pre-existing jointing, on either side of the injection borehole.

The final chapter gives numerous cases of application of FRACOD, where the
major emphasis is probably on the field of high-level nuclear waste isolation and
also geothermal energy access boreholes. Particular concern is with the excavation
disturbed zone, or EDZ, which can have important consequences both for well
stability and for repository construction. The latter may be in different orientations
with respect to, e.g., the major horizontal stress, where optimal disposal tunnel
orientation may not be optimal for access tunnel excavation. Subsequent canister
placement in large diameter holes and the subsequent thermal loading phase have
been tested at large scale by Sweden’s SKB in Aspd, and here these have been
modelled with FRACOD.

For those who desire greater insight and understanding of fracture mechanics,
coupled process modelling, and the application and capabilities of the code FRA-
COD, this book is of course ‘a must have” item. It is an impressive accomplishment,
and congratulations to all the authors for their unique and essential contributions to
its success.

Oslo, Norway Nick Barton
August 2012



Preface

This book describes a unique approach using the principles of rock fracture
mechanics to investigate the behaviour of fractured rock masses for rock engineering
purposes.

Rock fracture mechanics, a promising outgrowth of rock mechanics and fracture
mechanics, has developed rapidly in recent years, driven by the need for in-depth
understanding of rock mass failure processes in both fundamental research and rock
engineering designs.

Today, as rock engineering extends into many more challenging fields (like
mining at depth, radioactive waste disposal, geothermal energy, and deep and
large underground spaces), it requires knowledge of rock masses, complex coupled
thermal-hydraulic—chemical-mechanical processes. Rock fracture mechanics play
a crucial role in these complex coupled processes simply because rock fractures are
the principal carrier and common interface.

To date, the demand for rock fracture mechanics—based design tools has out-
stripped the very limited number of numerical tools available. Most of those tools
were developed for civil engineering and material sciences and deal with substances
such as steel, ceramic, glass, ice, and concrete which differ markedly from rocks in
their fracturing behaviour.

To address this need, in 1990 the authors began the work of developing a practical
numerical approach using fracture mechanics principles to predict rock mass failure
processes. It started with a Ph.D. thesis by the first author suggesting a new fracture
criterion that predicts both tensile and shear fracture propagations, overcoming the
shortcomings of traditional fracture criteria that predict only tensile failure. This
approach has proved very effective in simulating the behaviour of multiple fractures
in rock-like materials in laboratory tests.

The development of this modelling approach with a view to engineering applica-
tion was initially driven by proposals for radioactive waste disposal in Sweden and
Finland, where fracture propagation in the hard bedrock (due to thermal loading and
glaciations) is considered a major risk factor. During this period, an earlier version
of the code FRACOD was developed, capable of simulating fracture propagation,
fracture initiation, and acoustic emission. This code capability was then expanded to

vii



viii Preface

include time-dependent rock behaviour and subcritical crack growth through a Ph.D.
study in 2008 by the third author. In the course of this development process, many
application case studies were conducted using FRACOD, including the well-known
Aspo Hard Rock Laboratory’s Pillar Spalling Experiments (APSE) in Sweden, the
DECOVALEX International Collaboration Project, and the Mizunami Underground
Research Laboratory (MIU) Investigations in Japan.

This fracture mechanics approach was further expanded to other application
fields of rock engineering such as tunnelling and geothermal energy. In an attempt
to investigate the stability of a tunnel under high horizontal stresses, FRACOD
successfully predicted the same “log-spiral” type of fracturing pattern around
the tunnel that was observed in the laboratory (Barton 2007). When applied to
back-analysis of in situ stresses in a 4.4 km deep geothermal well in Australia,
this approach was shown to realistically simulate the borehole breakout, thereby
accurately predicting the rock mass stress state.

Recent surges in fossil fuel (e.g., oil and coal) prices and concerns about
global warming have significantly increased worldwide interest in alternative energy
sources and storage methods. Thus, accurate prediction of the coupled behaviour
of rock fracturing, fluid flow and thermal processes is now a vital scientific
endeavour. FRACOD seeks to address the complex design issues facing various
emerging developments in energy-related industries including geothermal energy,
LNG underground storage, and CO, geosequestration.

Since 2007, the focus of FRACOD development has shifted to the coupling
between rock fracturing. fluid flow, and thermal loading thanks to the establishment
of an international collaboration project with participants from Australia, Europe,
and South Korea. Coupling functions of T-M (thermal-mechanical) processes and
H-M (hydro-mechanical) processes have been developed in FRACOD. Several
application case studies related to hydraulic fracturing and LNG underground
storage have been conducted.

Development and application of the fracture mechanics approach using FRA-
COD has not stopped — and it will continue. Currently, the full three-way coupling
of M-T-H is being developed in the two-dimensional FRACOD code to address
industry needs. A three-dimensional version of FRACOD is also under development
for modelling true 3D problems.

It is our wish that this book will familiarize readers with the concepts and
basic principles of using a fracture mechanics approach to solve rock engineering
problems. We also hope this book will stimulate more research and development
in this area, eventually providing the rock mechanics and rock engineering society
with an alternative, robust, and unique tool for rock engineering design.

Brisbane
July 2012
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Chapter 1
Introduction

Abstract Understanding the long-term behaviour of a rock mass and the coupled
hydro-thermal-mechanical processes is crucial for geological radioactive waste dis-
posal, geothermal, mining, LNG underground storage, and CO, geosequestration.
Rock fracture initiation and propagation are the key mechanism for rock mass
instability.

The ability to predict and realistically reproduce rock mass behaviour using
a numerical model is a pivotal step in solving many rock engineering problems.
Although several existing numerical codes can model the behaviour of jointed
or fractured rock mass, most do not consider the explicit fracture initiation and
propagation—a dominant mechanism, particularly in hard rocks.

The FRActure propagation CODe (FRACOD) presented here is a two-
dimensional computer code designed to simulate fracture initiation and propagation
in elastic and isotropic rock mediums. This book focuses on the theories and
numerical principles behind FRACOD, providing examples where the numerical
method is applied to solve practical problems.

Rock mass is increasingly employed as the host medium for a vast array of human
activities. Facilities like storage areas, wells, tunnels, underground power stations
are located in a variety of rock types and under different rock mechanical conditions.
Excavation stability is imperative for all such constructions, in both the short and
long term.

Understanding the long-term behaviour of a rock mass is crucial for safety
and performance assessments of geological radioactive waste disposal. Hydro-
thermal-mechanical couplings of the ongoing processes around these repositories
are particularly important. The understanding of fracturing of rock masses has
also become a critical endeavour for energy extraction and storage. Small-scale
breakouts around single wells in petroleum engineering can devastate the oil and
gas extraction from source rock. The large-scale fracturing of rock formations for
improved oil, gas and heat extraction is an essential field of development in the

B. Shen et al.. Modelling Rock Fracturing Processes: A Fracture Mechanics 1
Approach Using FRACOD. DOI 10.1007/978-94-007-6904-5_1,
© Springer Science+ Business Media Dordrecht 2014
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petroleum and geothermal industries. CO; geosequestration is a complex new field
of rock engineering where fracturing of the overburden rock during pressurization
must be prevented while fracturing of the storage formation might be needed. All
these intricate design tasks require powerful prediction and modelling tools.

Failure of brittle rock is often associated with a rapid and violent event, as
detected in short-term loading strength laboratory tests. From these test results, the
mechanical properties of rock including fracture mechanics parameters are obtained.
When rock is stressed close to its short-term strength, slow crack growth (also called
subcritical crack propagation), occurs. With time, this slow fracturing process may
generate critical stress concentrations that lead to a sudden unstable failure event.
Slow subcritical crack growth (SCG) is thought to play an important role in long-
term rock stability at all scales and for all kinds of rocks, ranging from laboratory
samples to earthquake-generated faults. When sudden rock movement occurs in
nature or around excavations the consequences can be serious.

The ability to predict and realistically reproduce rock mass behaviour using
a numerical model is a pivotal step in solving many rock engineering problems.
Numerical modelling can improve our understanding of the complicated failure
processes in rock and the many factors affecting the behaviour of fractured rock.
When our models manage to better capture the fundamental failure mechanisms
observed in the laboratory, our ability to generate reliable large-scale models
improves, as does our ability to predict the short and long-term behaviour of rock
masses in situ. Our ability to identify conditions where time is an important variable
for the stability and long-term behaviour of rock excavations is likewise enhanced.

Several different types of numerical methods have been developed for vari-
ous geomechanical problems (Jing 2003). Since every method and code has its
advantages and disadvantages, the choice of a suitable code should be carefully
assessed for each rock-engineering problem. Code suitability depends on the
character of the problem and the goal of the study. The mechanical behaviour of the
rock mass is largely influenced by the presence of natural discontinuities. Hence,
numerical methods that allow the introduction of displacement discontinuities into
the continuous medium are often required in solving rock engineering problems.

Numerical methods can be subdivided into “Continuum methods™ and “Dis-
continuum methods”. Continuum methods (or continuum approaches) do not take
into account the presence of distinct discontinuities. If natural discontinuities are
numerous, then the substitution, at a certain scale, of a discontinuous medium with
a continuous one is required. The mechanical characteristics of the continuous
medium must be such that its behaviour is equivalent from a mechanical point of
view to that of the discontinuous medium. The effects of fractures are smoothed out
and the heavily jointed rock mass is considered as an equivalent continuous medium.

The Discontinuum methods (or “Explicit joint approaches”) allow one to incor-
porate discrete discontinuities in the displacement field, that is, individual joints in
the rock mass can be modelled explicitly. Discontinuum methods may describe the
fracture process using fracture mechanics principles.

Although several existing numerical codes can model the behaviour of jointed
or fractured rock mass, most do not consider the explicit fracture initiation and



References 3

propagation—a dominant mechanism, particularly in hard rocks. A very limited
number of codes can model the fracture propagation but are not designed for
application at engineering scales. Using fracture mechanics principles, this book
aims to introduce unique numerical approaches to complex rock failure problems.

The FRActure propagation CODe (FRACOD) presented here is a two-
dimensional computer code designed to simulate fracture initiation and propagation
in elastic and isotropic rock mediums. The code employs Displacement
Discontinuity Method (DDM) principles and a fracture propagation criterion for
detecting the possibility and path of fracture propagation, Shen and Stephansson
(1993).

This book focuses on the theories and numerical principles behind FRACOD.
providing examples where the numerical method is applied to solve practical
problems involving rock fracture initiation and propagation in rock masses subjected
to various loads (including in situ stress, thermal stress and hydraulic pressure).

We begin with the fundamental theory of fracture mechanics and the Dis-
placement Discontinuity Method in Chaps. 2 and 3. In Chaps. 4, 5, 6, 7 and 8,
we describe the methodology and principles of using FRACOD to simulate joint
behaviour, time-dependency, multiple region systems, gravitational problems, and
sequential excavations. In Chap. 9, the development of a thermal-mechanical
coupling function in FRACOD is described. In Chap. 10, the newly developed
hydro-mechanical coupling function is introduced. Chapter 11 presents the function
for modelling anisotropic problems. Chapter 12 outlines the rock properties needed
for modelling with FRACOD. Chapter 13 gives numerous verification cases of the
code. Finally, Chap. 14 describes several real case studies, applying FRACOD to
practical problems.

For those wishing to try the numerical code FRACOD, the demonstration version
of FRACOD is provided and can be downloaded from http://extras.springer.com.
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